

Timehouse Speech Server,
THSpeechServer

Version 1.0

24th of April 2003

OVERVIEW.. 4

GENERAL ... 4
FEATURE LIST .. 4
LICENSING ... 4
REQUIREMENTS.. 5

SAPI4 requirements .. 5
SAPI5 requirements as stated in the SAPI5 documentation 5

INSTALLATION.. 6
NORMAL INSTALLATION .. 6
MANUAL INSTALLATION OF THSPEECHSERVER.DLL ... 6

USING THE SPEECH SYNTHESIZER.. 6
SYNTHESIZER CONTROL TAGS .. 6

SAPI 4 control tag and backslash format ... 7
SAPI 5 control tag format ... 7
List of known control tags... 8
Example of the conversion .. 9

THREADING AND EVENTS (DESKTOP APPLICATIONS ONLY).. 9
Bookmarks... 10
Visemes ... 11

MP3 FILES.. 11

ASP AND VISUAL BASIC QUICK START ... 12

METHOD REFERENCE IN VISUAL BASIC SYNTAX .. 13
GENERAL ... 13
ERROR HANDLING .. 13
INITIALIZATION.. 14

Init ... 14
SetTempPath ... 15

VOICE SELECTION .. 16
SelectVoice.. 16
GetDefaultVoice.. 17
GetVoiceCount .. 17
GetVoiceName .. 18
GetVoiceParam... 18

SPEAKING & CONVERTING TO MP3 ... 19
SpeakToFile .. 19
WavToMp3.. 21

SETTING VOICE PARAMETERS... 22
SetRate .. 22
GetRate ... 23
SetPitch (Only for SAPI4 synthesizers)... 24

 2

GetPitch (Only for SAPI4 synthesizers).. 24
SetVolume ... 25
GetVolume... 25

SPEAKING THROUGH THE SOUND CARD .. 27
Speak ... 27
GetStatus ... 28
Pause... 28
Resume .. 29
Stop ... 29

HELPER METHODS.. 30
DeleteFile.. 30
ReadFile.. 30

REDISTRIBUTION AND GUIDELINES FOR DESKTOP APPLICATIONS....... 31

APPENDIX A, INSTALLATION ISSUES... 32

SAPI4 .. 32
SAPI5 .. 32

APPENDIX B, LANGUAGE CODES .. 33

APPENDIX C, SAPI4 CONTROL TAGS.. 36

APPENDIX D, SAPI5 CONTROL TAGS.. 48

 3

Overview

General
This component provides an ActiveX interface for any Microsoft
Windows Speech API (SAPI) compliant speech synthesizers. The
component supports SAPI versions 4.x and 5.x and provides a similar
and seamless interface for both versions.

There are SAPI compatible versions of speech synthesizers available
for all of the world's main languages. An English speaking Microsoft
Speech synthesizer can be downloaded free of charge from
http://www.microsoft.com/speech or from
http://products.timehouse.fi/ss_download.asp.

To quickly find out how to use the THSpeechServer, please see section
ASP and Visual Basic quick start.

Feature list
• Capable of handling multiple channels in multiple threads
• Save synthesized speech as WAV or MP3 files
• Control the quality of the MP3 file (bit rate etc.)
• Seamless interface to SAPI4 and SAPI5 synthesizers
• ActiveX-interface for Visual Basic and script (ASP, ASP.net, PHP

etc.) developers
• C++ -interface
• Java interface
• Samples for ASP, PHP, Visual Basic, Java and C++, C# (.net).

Ready sample projects for Visual Studio 6.0 and Visual
Studio.net. Samples run with other compilers as well.

• Easy to use front end for Lame MP3 encoder

Licensing
Timehouse SpeechServer is royalty free – you can distribute it freely
with your product.

A single license gives you the right to distribute Timehouse
SpeechServer with your products without any additional costs. We
demand no royalty fees, you do not need to display our logo nor
mention the use of the SpeechServer in the credits, all we ask is that
you do your best to ensure there is no way to extract your registration
key from the end-product.

 4

http://www.microsoft.com/speech
http://products.timehouse.fi/ss_download.asp

One license allows using SpeechServer for one developer at a time. If
there are more developers working with the SpeechServer, you need
to purchase a separate license for each developer. Please see pricing
list for details.

The download package contains neither the Microsoft SAPI technology,
nor any speech synthesizers.

Information on redistribution of Microsoft speech technology can be
found from http://www.microsoft.com/speech/legal/.

Please also check http://www.microsoft.com/speech/ for the latest
Microsoft speech products.

Requirements
Timehouse Speech Server requires:

• Windows 95 with DCOM installed
(http://www.microsoft.com/com/dcom/dcom95/dcom1_3.asp)

• Windows 98 / Me / NT 4.0 / 2000 / XP
• SAPI 4, or a newer version, installed in the computer
• At least one SAPI-compliant Speech synthesizer
• Microsoft IIS 4.x or newer if used with Web server, NT 4.0 or

newer recommended

SAPI4 requirements
All 32-bit Windows operating systems are supported.

Memory and processor requirements depend on the used synthesizer.
We have successfully tested the Microsoft Speech Synthesis engine on
a NT 4.0 system with a 200 MHz mmx Pentium processor and 128 MB
of RAM (would probably work with lesser memory).

SAPI5 requirements as stated in the SAPI5 documentation
Supported Operating Systems:

• Microsoft Windows(r) NT Workstation 4.0, service pack 6a
• Microsoft Windows 2000 Professional Workstation
• Microsoft Windows 98. However, Windows 95 is not supported.
• Microsoft Windows Millennium edition

Memory and processor requirements depend on the synthesizer in use.
We have successfully tested Microsoft Speech Synthesis engine on an

 5

http://www.microsoft.com/speech/legal/
http://www.microsoft.com/speech/
http://www.microsoft.com/com/dcom/dcom95/dcom1_3.asp

NT 4.0 system with a 200 MHz mmx Pentium processor and 128 MB of
RAM (would probably work with much less memory).

Installation

Normal installation
Run the installer THSpeechServer.exe and follow the instructions.

Manual installation of THSpeechServer.dll
A few steps are required:

• Copy the THSpeechServer.dll and THSpeechServer.ini into
Windows system directory (winnt\system32 for NT, 2000 and XP,
windows\system for 95, 98 and Me)

• Open the command prompt and navigate to dll's directory.
• To install: Issue command regsvr32 THSpeechServer.dll
• To uninstall: Issue command regsvr32 THSpeechServer.dll /u

Installing:

C:\>cd winnt\system32
C:\winnt\system32>regsvr32 thspeechserver.dll

Uninstalling:
C:\>cd winnt\system32
C:\winnt\system32>regsvr32 thspeechserver.dll /u
C:\winnt\system32>del thspeechserver.dll

Windows NT comes with regsvr32.exe – for Windows 9x you need to
obtain one from the Internet or an NT system, it will also work on Win
9x.

Using the speech synthesizer

Synthesizer control tags
You have the ability to place special control tags into the text to be
spoken by SAPI. These control tags change the attributes (speed,
volume, anxiety etc.) of the text being spoken.

Unfortunately there are differences between the syntax of the control
tags in SAPI 5 and SAPI 4. SAPI 4 uses backslashes as tag-markers,
whereas SAPI 5 uses XML-like tags.

The following example starts speaking a sentence with the default
speaking rate and then doubles the speaking rate.

SAPI 4:

 6

\rspd=100\Hello, \rspd=200\now I speak very fast.

SAPI 5:
<RATE SPEED="0"/>Hello, <RATE SPEED="6"/>now I speak very fast.

With the Timehouse Speech Server you have a seamless interface for
both SAPI 4 and SAPI 5 synthesizers, all you have to do is to decide
which control tag format you want to use and let the component
convert the tags to fit the needs of the synthesizer in use. The
component will only convert tags, which are known to it. Unknown
tags are removed to avoid speaking the control tags aloud. If
conversion is not needed, the text is passed to the synthesizer as it is.

We recommend you to use the SAPI 5 tag format if you don't have
previous experience of SAPI 4. This is because SAPI 5 will likely
replace SAPI 4 as time passes and the SAPI 5 syntax is simply better
than the SAPI 4 syntax.

You can study tag conversion with utility THSpeechTest.exe.

SAPI 4 control tag and backslash format
All SAPI 4 control tags begin and end with a backslash (\).
A double backslash (\\) means, "This is one backslash". In Sapi 4, for
example, the path "C:\Program files" would be "C:\\Program files".
All unknown control tags are skipped. For example text
"Hello\jargon=what\ there" would be synthesized as "Hello there".
Please note that you have to convert all backslashes from the source
text into double backslashes before passing them to the synthesizer:

"C:\Program files" -> "C:\\Program \rspd=100\ files"

See appendix C for a complete list of SAPI4 control tags and their
syntax.

SAPI 5 control tag format
SAPI 5 uses XML-style tags. This means that all tags are enclosed like
<THIS>. With SAPI 5 tags you can define the scope that tags will
affect: <RATE ABSSPEED="10">blaah, blaah</RATE>. The end tag </RATE>
restores the previous rate.

Global tags change the settings permanently. Global tags have a slash
before tag's end mark like <THIS/>. For example: <RATE
ABSSPEED="10"/>Speaking very fast until the end.

 7

See appendix D for complete list of SAPI5 control tags and their
syntax.

List of known control tags
SAPI4 SAPI5 Description
\mrk=number\ <BOOKMARK MARK="number"/> Defines bookmark.

Bookmark identifier must be
a 32bit unsigned number
even if the SAPI5
specification allows using
strings.

\pau=number\ <SILENCE MSEC="number"/> Produces silence for the
specified number of
milliseconds into the output
audio stream.

\rpit=number\

The value of number is
relative to the default pitch:

50 is 1/2 of the default pitch
100 is the default pitch
200 is 2 times the default
pitch

<PITCH ABSMIDDLE="number"/>

The value of number is in range -
24…+24:

-24 is one octave below the default
pitch
0 is the default pitch
24 is one octave below the default
pitch

Sets the relative pitch
adjustment at which speech
is synthesized.

Note different ranges for
SAPI4 and SAPI5.

\rspd=number\

The value of number is
relative to the default speed:

50 is 1/2 of the default speed
100 is the default speed
200 is 2 times the default
speed

<RATE ABSSPEED="number"/>

The value of number is in range -
10…+10:

-10 is 1/3 of the default speed
0 is the default speed
10 is 3 times the default speed

Sets the relative speed
adjustment at which words
are synthesized.

Note different ranges for
SAPI4 and SAPI5.

\vol=number\

The value of is between
0…65535.

<VOLUME LEVEL="number"/>

The value of is between 0…100.

Sets the volume.

The component does not convert any other tags. Conversion does not
support scoped tags – all tags are considered global. E.g. you cannot
use this SAPI5 format:

<RATE ABSSPEED="+10">I am very fast,</RATE> and now I am
slower.

Scoped SAPI 5-tags are considered global tags in conversion.

Following XML entities are also converted:
SAPI4 SAPI5 Description
< < Character <
> > Character >
& & Character &
\\ \ Character \

 8

Example of the conversion
Here is a sample of SAPI 5 coded text:

1<2, 2>1 a&b
<bookmark mark="123"/>Just had a bookmark,
<silence msec="1000"/>and a pause,
<pitch absmiddle="10"/>high pitch,
<pitch absmiddle="0"/>normal pitch,
<rate absspeed="10"/>I speak very fast so you can't maybe understand
this,
<rate absspeed="0"/>normal,
<volume level="0"/>should be total silence,
<volume level="100"/>and volume at maximum.

And the same text converted to SAPI4 format:

1<2, 2>1 a&b
\mrk=123\Just had a bookmark,
\pau=1000\and a pause,
\rpit=300\high pitch,
\rpit=100\normal pitch,
\rspd=300\I speak very fast so you can't maybe understand this,
\rspd=100\normal,
\vol=0\should be total silence,
\vol=65535\and volume at maximum.

Threading and events (desktop applications only)
Timehouse SpeechServer supports apartment model threading. This
means that methods may be called and objects may be destroyed only
from the thread it was created. You may have many running threads
each having their own SpeechServer object.

This rest of this section applies only to speaking through a sound card
with Speak-method.

SpeechServer starts internally a new thread that runs the speech
synthesizer, unless the parameter “nonewthread” is specified in Init-
method. This allows the synthesizer to run in the background
independent of your program.

The Speak()-method works in the background and sends events,
whenever something interesting happens. Text buffers are queued and
the synthesizer speaks them in the order they are sent through the
Speak()-method.

Timehouse SpeechServer sends events to event handlers about
synthesizer events.
These events are:

• Synthesizer starts speaking (OnAudioStart)
• Synthesizer stops speaking (OnAudioStop)

 9

• Synthesizer starts speaking one text buffer sent by speak-
method (OnTextDataStarted)

• Text buffer has been spoken (OnTextDataDone)
• Specially coded bookmark was encountered (OnBookMark)
• State of talking head has changed (OnViseme)

Example of events:
Operation Event(s) Description
Speak() called twice:
Speak("the cat is", 1)
Speak("in the moon", 2)

OnAudioStart
OnTextDataStarted(1)

Sound card started and
speaking first buffer
started

Pause() called OnAudioStop Sound card stopped
Resume() called OnAudioStart Sound card started
(time passes) OnTextDataDone(1) First buffer spoken
(time passes) OnTextDataStarted(2) Second buffer started

Stop() called OnTextDataDone(2)
OnAudioStop

Second buffer spoken
and audio card stopped

OnBookMark events are sent just when the text in the bookmark's
place is played through the audio card. The synthesizer decides the
appropriate times to send OnViseme events.

These events are sent using the application’s message queue. This
means that to fire events, the application must dispatch messages by:

• calling DoEvents() in Visual Basic or Visual Basic for Applications
• calling GetMessage() & DispatchMessage() in C++
• running AWT-program in Java

In C++ or Java programs you may specify “firenopost” flag in Init-
mehtod. With this flag, events will be fired straight from the
synthesizer thread, violating normal threading rules.

Bookmarks
Bookmarks are 32-bit numbers that you can embed anywhere in the
text. You can use them for example to mark each space in the text. A
good choice for the bookmark number would be the index of the
current character or word.

Bookmarks are coded differently in SAPI4 and SAPI5:

SAPI 4: This\mrk=5\ is\mrk=8\ text.
SAPI 5: This<BOOKMARK MARK="5"/> is<BOOKMARK MARK="8"/>
text.

 10

Visemes
As the synthesizer speaks it sends information that can be used to
animate a "talking head". This information contains:

• The phoneme which is currently synthesized
• The phoneme's duration
• The next phoneme
• Whether to stress or not to stress the current letter
• Whether to emphasize the current word or not

Actually phonemes that look similar when spoken are mapped to the
same viseme. Visemes are numbered beginning from zero:

VISEME Described SAPI Phonemes Word examples
0 Silence

1 ae, ax, ah Cat, ago, cut

2 Aa Father

3 Ao Dog

4 ey, eh, uh Ate, pet, book

5 Er Fur

6 y, iy, ih, ix Yard, feel, fill

7 W, uw With, too

8 ow Go

9 aw Foul

10 oy Toy

11 ay Bite

12 H Help

13 R Red

14 L Lid

15 s, z Sit, zap

16 sh, ch, jh, zh She, chin, joy, pleasure

17 Th, dh Thin, then

18 f, v Fork, vat

19 D, t, n Dig, talk, no

20 k, g, ng cut, gut, sing

21 P, b, m put, big, mat

Timehouse Speech Server provides SAPI 5 style information also for
SAPI 4 synthesizers. SAPI 4 synthesizers do not give similar
information as SAPI 5 does; therefore information is reduced just to
the current viseme.

Please see Init-method in the next section for further information.

MP3 files
MP3 encoding uses the external lame MP3 encoder lame_enc.dll. You
can download it from
http://www.mp3-tech.org/software/encoders/lamewin32.exe.

 11

http://www.mp3-tech.org/software/encoders/lamewin32.exe

After installation, copy lame_enc.dll to the same directory where
THSpeechServer.dll is installed (Windows\system or Winnt\system32).

For licensing information, see:
http://www.mp3licensing.com

ASP and Visual Basic quick start
Here is the minimal code to use the component:

Dim Synt As Object
Dim bResult As Boolean
Dim sFilename As String
Dim sId As String

Set Synt = CreateObject("THSpeechServer.THSynthesizer")
sFilename = "c:\test.wav"

' Initialize the object
bResult = Synt.Init("sapi4,sapi5", "")
If bResult = False Then
 MsgBox "TH Speech Server initialization failed."
End If

' Select default voice or first if no default
sId = Synt.GetDefaultVoice()
If sId = "" Then
 sId = Synt.GetVoiceName(1)
 sId = Mid(sId, InStr(sId, Chr(9)) + 1)
End If

bResult = Synt.SelectVoice(sId)
If bResult = False Then
 MsgBox "Voice selection failed."
End If

' Speak to the file
bResult = Synt.SpeakToFile("wav,plaintext", "Hello world!", sFilename)
If bResult = False Then
 MsgBox "Error saving file."
Else
 MsgBox "File " & sFilename & " created."
End If

' Discard the object
Set Synt = Nothing

 12

http://www.mp3licensing.com/

Method reference in Visual Basic syntax

General
The component is implemented as a COM/ActiveX object with a dual
interface. This allows for using it from Visual Basic using the
CreateObject() command.

To use multiple synthesizers, create several THSpeechServer objects
instead of using a single object and changing the voice with the
SelectVoice() -call.

Error handling
Most of the methods return a Boolean value: 0 (false) means failure
and –1 (true) means success. Because Visual Basic’s true value (-1) is
different from many other languages (1), test only for the false value
since it is zero in all languages:

bResult = Synt.Init()
If bResult = False Then
 ' -- Handle error --
End If

After a failed operation you can query the error message by using the
GetError() -method.

Table of error origins:

-10 Initialize-call failed, likely CoInitialize failed
-11 Initialize-call failed, creating notify window

-100 General SAPI4 error
-101 SAPI4 was not installed (Init, GetVoiceCount)
-102 No SAPI4 synthesizer was installed (GetVoiceCount)
-103 Creating SAPI4 audio object failed
-104 Creating SAPI4-synthesizer failed
-105 SAPI4-speak call failed
-106 SAPI4-speak to file call failed
-107 SAPI4 does not have default voice
-200 General SAPI5 error
-201 SAPI5 was not installed
-202 No SAPI5 synthesizer was installed
-204 Creating SAPI5-synthesizer failed
-205 SAPI5-speak call failed
-206 SAPI5-speak to file call failed
-300 General error in SAPI4&SAPI5 controller
-301 Initialize-call failed because no wanted SAPI system

files were installed (4 or 5 or both)

 13

Initialization

Init
Syntax:

Synt.Init(sFlags as String, sKey as String)

Usage:
Initializes the component.

Arguments:
String sFlags

String may contain combination of these separated with comma:

• “sapi4” => initializes use of SAPI4 compliant synthesizers
• “sapi5” => initializes use of SAPI5 compliant synthesizers
• "tag4" => Use SAPI4 control tags
• "tag5" => Use SAPI5 control tags
• "onlyfile" => Use only SpeakToFile-method
• "nonewthread" => Do not create worker thread for

synthesizer (doevents-parameter does nothing if this is
specified).

• “doevents” => Dispatch all Windows messages while
waiting any Speech Server call to complete. Without this
parameter calling program is blocked until a call completes.

• “fireall” => Fire all possible events in. Affects only Speak-
call. Please see events.

• “firenoviseme” => Fire all events except viseme-events.
Please see events.

• “firenopost” => Fire events straight from synthesizer
thread violating normal threading rules. Use with caution and
only in C++ or Java programs without a message queue!

If you pass an empty string as the sFlags parameter, it will
initialize SAPI4 and SAPI5 synthesizers without any tag
conversion (equal to initialization string "sapi4,sapi5").

You can specify either one of the "tag4" or "tag5" strings but not
both. If you do not specify a tag-parameter, all tags are passed
to the synthesizer as they are and it is up to you to check that
the tag format is appropriate for your current synthesizer. Use
the GetVoiceParam-method to find out whether the current
synthesizer is sapi4- or sapi5-compliant.

 14

If you do not specify the "onlyfile" -parameter, a sound card is
required when selecting SAPI4 synthesizer with SelectVoice-call.
The sound card must also be compatible with the synthesizer
(usually a 16 bit sound is required). SAPI5 does not have this
limitation – it needs a sound card only when calling Speak-
method. You should specify this parameter if you don't need
speaking through sound card. Otherwise a compatible sound
card is required.

The "nonewthread" -parameter is recommended if you are not
using the Speak-method. If not specified, the component
handles the synthesizer in its own thread and minimizes
requirements for the calling application. With this parameter the
synthesizer may stop speaking if the calling application is busy
(not dispatching Windows messages). For SpeakToFile-only
usage it is recommended to specify this parameter to avoid
unnecessary overhead.

String sKey

The license key or empty string if running demonstration
version.

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
Dim Synt As Object
Dim bResult As Boolean

Set Synt = CreateObject("THSpeechServer.THSynthesizer")
‘ Use sapi4&sapi5 synthesizers with sapi5 tag format.
bResult = Synt.Init("sapi4,sapi5,tag5", "")
If bResult = False Then

MsgBox Synt.GetError()
End If

SetTempPath
Syntax:

Synt.SetTempPath(sPath as String)

Usage:
Sets the path used for temporary files. SpeakToFile method
writes always temporary files even if result is returned in
memory buffer. If you do not specify the temporary path, it will
be one in the following order:

• The path specified by the TMP environment variable.

 15

• The path specified by the TEMP environment variable, if
TMP is not defined.

• The Windows directory, if both TMP and TEMP are not
defined.

Arguments:

String sPath
Full path to temporary folder with or without ending backslash
(in other words, “c:\temp” and “c:\temp\” are both ok).

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message.
Current version never fails.

Voice selection

SelectVoice
Syntax:

Synt.SelectVoice(sVoiceID as String)

Usage:
Initializes the component to use a specific voice.

Arguments:
String sVoiceID

ID of the desired synthesizer. Use THSapiTest.exe to get the ID.

SAPI4 Id’s are in format:
{C77C5170-2867-11D0-847B-444553540000}

SAPI5 Id’s are in format:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\MSMary

Return value (VARIANT_BOOL):

True: Success
False: Failed – call GetError for details

Example:
Dim bResult As Boolean

' Microsoft Speech Synthesis Engine: Mary
bResult = Synt.SelectVoice(‘ Line continues...
"{C77C5170-2867-11D0-847B-444553540000}")
If bResult = False Then

MsgBox (Synt.GetError())
End If

 16

GetDefaultVoice
Syntax:

Synt.GetDefaultVoice()

Usage:
Returns ID of the system's default synthesizer. Only SAPI 5 has
a default synthesizer. The user can select and manipulate the
default synthesizer from the control panel. If you are using SAPI
5, this is the preferred method to select a synthesizer.

Return value (VARIANT/VT_BSTR):
ID of the synthesizer for SelectVoice-function. “” Means failure
(SAPI 5 not installed or no default voice).

Example:
Dim sId As String
Dim sName As String

sId = Synt.GetDefaultVoice()
If sId = "" Then
 sName = Synt.GetVoiceName(1)
 sId = Mid(sName, InStr(sName, Chr(9)) + 1)
End If

Synt.SelectVoice (sId)

GetVoiceCount
Syntax:

Synt.GetVoiceCount()

Usage:
Returns number of installed synthesizers.

Return value (VARIANT/VT_I4):
The number of installed synthesizers or actually the number of
voices is saved in this parameter.

Zero means that there are no synthesizers installed or an error
has occurred. Call GetError() for details.

Example:
Dim nVoices As Integer

nVoices = Synt.GetVoiceCount()
If nVoices = 0 Then

MsgBox (Synt.GetError())
End if

 17

GetVoiceName
Syntax:

Synt.GetVoiceName(nIndex as Integer)

Usage:
Returns the name and ID of one synthesizer.

Arguments:
nIndex

Index between 1…number of voices installed.

Return value (VARIANT/VT_BSTR):
Empty string “” indicates failure.

Otherwise the name is returned in the format:
Human readable name<tab>ID

For example:
Microsoft Speech Synthesis Engine: Mary
{C77C5170-2867-11D0-847B-444553540000}

In the above examplethe Tab-character chr(9) is replaced with
line break.

Example:
Dim sName, sId As String

sName = Synt.GetVoiceName(1)
If sName = "" Then

MsgBox (Synt.GetError())
else
 sId = Mid(sName, InStr(sName, Chr(9)) + 1)
 sName = Left(sName, InStr(sName, Chr(9)) - 1)
 Synt.SelectVoice(sId)
End If

GetVoiceParam
Syntax:

Synt.GetVoiceName(sSelector as String)

Usage:
Returns the specified synthesizer’s parameter. Call this only after
selecting a synthesizer by using the SelectVoice() -call.

Arguments:
sSelector

Defines which parameter is returned. Must be one of following:

 18

Language
Returns language id of the synthesizer. Please see appendix B
for language ids.

Version
Returns "4" for SAPI4-synthesizer and "5" for SAPI5-synthesizer

Hasviseme
Returns "0" or "1" depending on whether the synthesizer
supports the OnViseme event. Use this if you need viseme
information and be aware that not all synthesizers support
sending OnViseme-events. (This feature is not useful for Web
server use)

Return value (VARIANT/VT_BSTR):
An empty string indicates failure. Other values are returned
parameters.

Example:
Dim sValue As String

' Assume here that voice has been selected before
sVer = Synt.GetVoiceParam("version")
If sVer = "" Then

MsgBox (Synt.GetError())
Else
 MsgBox (“Version is “ & sVer)
End If

Speaking & converting to MP3

SpeakToFile
Syntax:

Synt.SpeakToFile(sFlags as String, sText as String, sFile as
String)

Usage:
Speaks given text to file in WAV-format. The format of the WAV-
file (sample rate and sample width) is set by the synthesizer and
therefore varies between synthesizers. Method returns after
speaking is completed (it may take a while to speak long text).

Arguments:
String sFlags

Empty string saves WAV-file in synthesizer’s natural format.
Please see method WavToMp3 for options controlling saving in
MP3-format.

 19

SFlags may contain also parameter:

• “plaintext”

Given sText does not contain any tagging. SpeechServer will
convert all tagging characters so that they will be spoken. For
example SAPI5-tagging: “1 < 2” will be converted to “1 <
2”.

String sText

Text to speak. The text may contain control tags – remember to
convert control characters before inserting control tags, or using
built-in conversion. For example, if using:

SAPI4-tag format, convert:
"c:\>file.txt" -> "c:\\>file.txt"

SAPI5-tag format, convert:
"c:\>file.txt" -> "c:\>file.txt"

String sFile
The synthesized speech is saved to this file. An empty string “”
means speak to memory buffer and return memory buffer. The
method needs to write a file even if the memory buffer is
returned. In this case a temporary file is created to the folder
described in method SetTempPath.

You need write permissions to the specified folder – if you are
using the Internet Information Server and have problems using
the memory buffer, please check the permissions of the
temporary folder.

Return value (VARIANT/VT_BOOL or VARIANT/ VT_ARRAY|VT_UI1):
If failed: Boolean value false.

If parameter sFile is empty: Memory buffer containing
synthesized file.

If parameter sFile contained file name and successful: Boolean
value true.

Notes:

 20

It is easiest to detect a possible error condition after this call by
calling the GetError() method. If it returns an empty string, the
operation was successful.

Example:
Dim rBuf As Variant
Dim bResult As Boolean

' Speak to the file
bResult = Synt.SpeakToFile("wav", "Hello world!", sFileName)

If Synt.GetError()<>"" Then
 MsgBox (Synt.GetError())
Else
 MsgBox ("File " & sFileName & " created.")
End If

' Speak to memory buffer
rBuf = Synt.SpeakToFile("wav", "Hello world!", "")

If Synt.GetError()<>"" Then
 MsgBox (Synt.GetError())
Else
 MsgBox ("Buffer lenght = " & UBound(rBuf)-LBound(rBuf)+1)
End If

WavToMp3
Syntax:

Synt.WavToMp3(sFlags as String, sSourceFile as String, sDestFile
as String)

Usage:
Converts given WAV-file to MP3 format. Please see section MP3
licensing & other information.

Arguments:
String sFlags

String may contain combination of these parameters separated
with commas:

• “mp3”

Save in MP3 format. In future versions there may be other
formats also.

• “kilobits=x”
Sets saving quality in kilobits per seconds (default is 128).
Example: kilobits=128.

• “samplerate=x”
Sets the resampling rate in Herzes (default allows encoder to
decide best sampling rate according to other parameters).
Example: samplerate=44100.

• “mono”
Sets output format to mono.

 21

• “stereo”
Sets output format to stereo (default).

String sSourceFile

The source file in WAV-format, must be a mono or stereo file
with 8 or 16 bits sample size. The sampling rate can be
anything.

String sDestFile
The MP3 data is saved to this file. An empty string “” means,
convert to memory buffer and return memory buffer.

Return value (VARIANT/VT_BOOL or VARIANT/ VT_ARRAY|VT_UI1):
If failed: Boolean value false.

If parameter sFile is empty: Memory buffer containing
synthesized file.

If parameter sFile contained file name and successful: Boolean
value true.

Notes:
It is easiest to detect a possible error condition after this call by
calling the GetError() method. If it returns empty string, the
operation was successful.

Example:
Dim rBuf As Variant
Dim bResult As Boolean

' Speak to the file
bResult = Synt.SpeakToFile("wav", "Hello world!", sFileName)

If Synt.GetError()<>"" Then
 MsgBox (Synt.GetError())
Else
 MsgBox ("File " & sFileName & " created.")
End If

' Speak to memory buffer
rBuf = Synt.SpeakToFile("wav", "Hello world!", "")

If Synt.GetError()<>"" Then
 MsgBox (Synt.GetError())
Else
 MsgBox ("Buffer lenght = " & UBound(rBuf)-LBound(rBuf)+1)
End If

Setting voice parameters

SetRate
Syntax:

 22

Synt.SetRate(nRate As Long)

Usage:
Sets the rate of the synthesizer. SAPI4 uses words per minute as
scale and SAPI5 uses range –10…10 where zero is natural speed,
-10 minimum and 10 is maximum. To make this voice parameter
adjustable, query for minimum and maximum values and let the
user set value between these.

Changing the rate of speech during a task does not affect the
current task instantly. The change will take effect once the
speech buffer is depleted (a few seconds). If you want to be able
to change the rate instantly, you have to stop the current task,
change the rate, and restart the task, or you need to use the
SAPI control tags mentioned earlier.

Arguments:
Long nRate

Speech rate in synthesizer’s scale. Pseudo value –9999 sets rate
to minimum and 9999 to maximum.

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get verbose error message

Example:
' Find min&max values for rate
' First save current value
nVal = Synt.GetRate()

' Set to minimum and ask for actual used value
Synt.SetRate (-9999)
nMin = Synt.GetRate()

' Set to maximum and ask for actual used value
Synt.SetRate (9999)
nMax = Synt.GetRate()

' Restore default value
Synt.SetRate (nVal)
MsgBox("Rate: Min=" & Str(nMin) & " Max=" & Str(nMax))

GetRate
Syntax:

nRate = Synt.GetRate()

Usage:
Returns the current speech rate.

Return value (VARIANT/VT_LONG):

 23

-9999 Failed
Any other Current rate in synthesizer’s internal scale.

Example – please see SetRate example.

SetPitch (Only for SAPI4 synthesizers)
Syntax:

Synt.SetPitch(nPitch As Long)

Usage:
Sets the pitch of the synthesizer. SAPI4 uses Hertz as scale.
SAPI5 does not support this method. To make this voice
parameter adjustable, query for minimum and maximum values
and let user set value between these.

Changing the pitch of speech during a task does not affect the
current task instantly. The change will take effect once the
speech buffer is depleted (a few seconds). If you want to be able
to change the pitch instantly, you have to stop the current task,
change the pitch, and restart the task, or you need to use the
SAPI control tags mentioned earlier.

Arguments:
Long nPitch

Speech pitch in synthesizer’s scale. Pseudo value –9999 sets
pitch to minimum and 9999 to maximum.

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
' Find min&max values for pitch
' First save current value
nVal = Synt.GetPitch()

' Set to minimum and ask for actual used value
Synt.SetPitch(-9999)
nMin = Synt.GetPitch()

' Set to maximum and ask for actual used value
Synt.SetPitch (9999)
nMax = Synt.GetPitch ()

' Restore default value
Synt.SetPitch (nVal)
MsgBox("Pitch: Min=" & Str(nMin) & " Max=" & Str(nMax))

GetPitch (Only for SAPI4 synthesizers)
Syntax:

 24

nPitch = Synt.GetPitch()

Usage:
Returns current speech pitch. SAPI5 does not support this
method.

Return value (VARIANT/VT_LONG):
-9999 Failed
Any other Current pitch in synthesizer’s internal scale.

Example – please see SetPitch example.

SetVolume
Syntax:

Synt.SetVolume(nVolumePercent As Long)

Usage:
Depending on the synthesizer and Windows version used,
setting the synthesizer’s output volume may affect the overall
wave volume in Windows. Therefore it is recommended to store
the original wave volume and set it back when quitting the
program.

Microsoft's synthesizers do not change global mixer settings;
instead they calculate volume in digital signal. Setting 100 is
maximum, 50 is –6 dB, 25 is –12 db, 12 is –24 dB etc.

Arguments:
Long nVolumePercent

Volume percent from maximum.

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
' Set volume to maximum (never clips the signal)
Synt.SetVolume(100)

GetVolume
Syntax:

nVolumePercent = Synt.GetVolume()

Usage:
Returns current speech volume.

 25

Return value (VARIANT/VT_LONG):
-9999 Failed
Any other Current volume percent.

 26

Speaking through the sound card

Speak
Syntax:

Synt.Speak (sFlags as String, sText as String, nData as Long)

Usage:
Speaks the given text via the soundcard. Puts the given text at
the end of the speech queue and returns immediately
(asynchronous call). If you gave parameter "nonewthread" to
Init-call, the synthesizer may stop speaking if the calling
application is busy (not dispatching Windows messages).

Function arguments:

String sFlags
Parameter may contain parameter:

• “plaintext”

Given sText does not contain any tagging. SpeechServer will
convert all tagging characters so that they will be spoken. For
example SAPI5-tagging: “1 < 2” will be converted to “1 <
2”.

String sText

Text to speak. The text may contain control tags – remember to
convert control characters before inserting control tags and
passing text to the synthesizer. For example, if using:

SAPI4-tag format, convert:
"c:\>file.txt" -> "c:\\>file.txt"

SAPI5-tag format, convert:
"c:\>file.txt" -> "c:\>file.txt"

Long nData
32-bit number attached to this text. This number is passed to all
events fired for this text.

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
' Speak the text

 27

bResult = Synt.Speak ("", "Hello world!")

If bResult = False Then
 MsgBox (Synt.GetError())
End If

GetStatus
Syntax:

nResult = Synt.GetStatus ()

Usage:
Returns the status of the synthesizer.

Return value (VARIANT/VT_I4):

0 Synthesizer idle, not speaking
1 Synthesizer speaking
2 Synthesizer paused

Example:
' Speak the text
bResult = Synt.Speak ("", "Hello world!")

If bResult = False Then
 MsgBox (Synt.GetError())
Else
 ‘ Wait until text is spoken
 ‘ NOT RECOMMENDED WAY – USE EVENTS INSTEAD

While Synt.GetStatus() <> 0
 Wend
End If

Pause
Syntax:

bResult = Synt.Pause(bExecute As Boolean)

Usage:
Pauses speaking or makes a query if pausing is possible.

Function arguments:

Boolean bExecute
True Execute the command
False Just query (for updating pause button or similar)

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
' Pause
Synt.Pause(True)

 28

Resume
Syntax:

bResult = Synt.Resume(bExecute As Boolean)

Usage:
Resumes paused speaking or makes a query if resuming is
possible.

Function arguments:

Boolean bExecute
True=Execute the command
False=Just query (for updating resume button or similar)

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
' Resume
Synt.Resume(True)

Stop
Syntax:

bResult = Synt.Stop()

Usage:
Stops speaking immediately and flushes all queued texts.
Returns after operation is completed (synchronous call).

Return value (VARIANT_BOOL):

True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

Example:
' Speak the text
bResult = Synt.Speak ("", "Hello world!")
If bResult = False Then
 MsgBox (Synt.GetError())
End If

' Stop speaking
bResult = Synt.Stop()
If bResult = False Then
 MsgBox (Synt.GetError())
End If

 29

Helper methods

DeleteFile
Syntax:

Synt.DeleteFile(sFile as String)

Usage:
Deletes the given file. Use this method to delete any temporary
files you have created.

Arguments:
String sFile

Full path name of the file to delete. Name may contain wild
characters * and ?.

Return value (VARIANT_BOOL):
True(-1) Succeeded
False(0) Failed, use GetError() to get English error message

ReadFile
Syntax:

Synt.ReadFile(sFile as String)

Usage:
Reads given file into memory.

Arguments:
String sFile

Full path name of the file.

Return value (VARIANT/VT_BOOL or VARIANT/ VT_ARRAY|VT_UI1):
If failed: Boolean value false.

If successful: Memory buffer containing the file.

Example:
' Read the file
sErr = oSynt.ReadFile(sFileName, rFile)
If sErr <> "" Then
 MsgBox (sErr)
Else
 MsgBox ("File " & sFileName & " read, size=" & (UBound(rFile) -
LBound(rFile) + 1))
End If

 30

Redistribution and guidelines for desktop applications
Redistribution is similar to manual installation. The only files you need
to install for the target system are THSpeechServer.dll and
THSpeechServer.ini. Place THSpeechServer.dll to the self-registering
file group targeted for the system-folder and THSpeechServer.ini to
the normal file group, also targeting the system-folder. Timehouse
SpeechServer uses the already installed speech synthesizers.

If you are using C++ or Java interface, registering the DLL is not
required since interface is native unlike Visual Basic / scripting
interface using COM.

To make your application work with future versions of the intended
synthesizer you should have the speech setup dialog showing all
installed voices on the user system (methods GetVoiceCount() and
GetVoiceName()) and allow the user to select the voice from that list.
Save the voice ID from the list and use it in the SelectVoice()-call
when your program starts. If SelectVoice fails, show error message
"Initializing speech synthesizer failed. Opening speech settings dialog.
[And detailed English error message here to be able to give better
support (GetError()-method)].".

Add requirement for using the application: "Application requires an
already installed SAPI4 or SAPI5 compatible speech synthesizer. For
example Microsoft Speech Synthesis Engine."

If there are not any synthesizers installed in the system, the Init-call
may return failed code (false) or GetVoiceCount returns zero. For the
user, the situation in these two cases is the same, but the actual
reason is slightly different:

1. If Init fails: There are no required Microsoft's system files (SAPI4 or
SAPI5) installed. (No SAPI version installed on the system).

2. If Init succeeds but GetVoiceCount returns zero: All speech
synthesizers have been uninstalled but the SAPI system files still exist
(since they cannot be uninstalled).

 31

Appendix A, installation issues
SAPI4 and SAPI5 can coexist. In other words it is possible to install
and use both synthesizers in the same system.

Please read page "Licensing Microsoft Speech Technology" from the
web address:

http://www.microsoft.com/speech/legal/

SAPI4
With SAPI4 Microsoft provides two executables for installations:

• SAPI4 system files in file spchapi.exe
• Microsoft Text-to-Speech Engine 4.0 in file msttsa22l.exe

To install the synthesizer, first execute spchapi.exe and then
msttsa22l.exe.

SAPI5
Unfortunately Microsoft does not provide any ready installation
executable for SAPI5. Therefore we have created an installation
program with InstallShield for Windows Installer (version 1.52). This
installation program is a single executable
(Sapi51AndMSTts51eng.exe) that installs SAPI5 system files, SAPI5
speech control panel and Microsoft Text to Speech Engine English. You
are free to use this installation program. You can download installation
program from http://products.timehouse.fi/ss_download.asp.

For more information download SAPI5 SDK from
http://www.microsoft.com/speech/.

 32

http://www.microsoft.com/speech/legal/
http://products.timehouse.fi/ss_download.asp
http://www.microsoft.com/speech/

Appendix B, language codes
A language ID is a 16 bit value which is the combination of a primary
language ID and a secondary language ID. The bits are allocated as
follows:
+-----------------------+-------------------------+
| Sublanguage ID | Primary Language ID |
+-----------------------+-------------------------+
15 10 9 0 bit

List of primary language Ids. Please note that to get primary language
from language Id, you must and the Id with number 0x3FF (1023 in
decimal).

0x00 LANG_NEUTRAL Neutral
0x01 LANG_ARABIC Arabic
0x02 LANG_BULGARIAN Bulgarian
0x03 LANG_CATALAN Catalan
0x04 LANG_CHINESE Chinese
0x05 LANG_CZECH Czech
0x06 LANG_DANISH Danish
0x07 LANG_GERMAN German
0x08 LANG_GREEK Greek
0x09 LANG_ENGLISH English
0x0a LANG_SPANISH Spanish
0x0b LANG_FINNISH Finnish
0x0c LANG_FRENCH French
0x0d LANG_HEBREW Hebrew
0x0e LANG_HUNGARIAN Hungarian
0x0f LANG_ICELANDIC Icelandic
0x10 LANG_ITALIAN Italian
0x11 LANG_JAPANESE Japanese
0x12 LANG_KOREAN Korean
0x13 LANG_DUTCH Dutch
0x14 LANG_NORWEGIAN Norwegian
0x15 LANG_POLISH Polish
0x16 LANG_PORTUGUESE Portuguese
0x18 LANG_ROMANIAN Romanian

 33

0x19 LANG_RUSSIAN Russian
0x1a LANG_CROATIAN Croatian
0x1a LANG_SERBIAN Serbian
0x1b LANG_SLOVAK Slovak
0x1c LANG_ALBANIAN Albanian
0x1d LANG_SWEDISH Swedish
0x1e LANG_THAI Thai
0x1f LANG_TURKISH Turkish
0x20 LANG_URDU Urdu
0x21 LANG_INDONESIAN Indonesian
0x22 LANG_UKRANIAN Ukrainian
0x23 LANG_BELARUSIAN Belarusian
0x24 LANG_SLOVENIAN Slovenian
0x25 LANG_ESTONIAN Estonian
0x26 LANG_LATVIAN Latvian
0x27 LANG_LITHUANIAN Lithuanian
0x29 LANG_FARSI Farsi
0x2a LANG_VIETNAMESE Vietnamese
0x2b LANG_ARMENIAN Armenian
0x2c LANG_AZERI Azeri
0x2d LANG_BASQUE Basque
0x2f LANG_MACEDONIAN FYRO Macedonian
0x36 LANG_AFRIKAANS Afrikaans
0x37 LANG_GEORGIAN Georgian
0x38 LANG_FAEROESE Faeroese
0x39 LANG_HINDI Hindi
0x3e LANG_MALAY Malay
0x3f LANG_KAZAK Kazak
0x40 LANG_KYRGYZ Kyrgyz
0x41 LANG_SWAHILI Swahili
0x43 LANG_UZBEK Uzbek
0x44 LANG_TATAR Tatar
0x45 LANG_BENGALI Bengali
0x46 LANG_PUNJABI Punjabi
0x47 LANG_GUJARATI Gujarati

 34

0x48 LANG_ORIYA Oriya
0x49 LANG_TAMIL Tamil
0x4a LANG_TELUGU Telugu
0x4b LANG_KANNADA Kannada
0x4c LANG_MALAYALAM Malayalam
0x4d LANG_ASSAMESE Assamese
0x4e LANG_MARATHI Marathi
0x4f LANG_SANSKRIT Sanskrit
0x50 LANG_MONGOLIAN Mongolian
0x56 LANG_GALICIAN Galician
0x57 LANG_KONKANI Konkani
0x58 LANG_MANIPURI Manipuri
0x59 LANG_SINDHI Sindhi
0x5a LANG_SYRIAC Syriac
0x60 LANG_KASHMIRI Kashmiri
0x61 LANG_NEPALI Nepali
0x65 LANG_DIVEHI Divehi
0x7f LANG_INVARIANT

 35

Appendix C, SAPI4 control tags
This is a copy of Microsoft SAPI 4.0a documentation. You can download
full SDK from
http://www.microsoft.com/speech/speechsdk/sdk40a.asp.

Control Tags

This section describes the text-to-speech control tags that can be embedded in the source
text to improve the prosody of text-to-speech translation:

• Syntax
• Conventions
• Chr
• Com
• Ctx (some speech engines may not support this tag)
• Dem (new for SAPI 4.0 -- some speech engines may not support

this tag)
• Emp (some speech engines may not support this tag)
• Eng
• Mrk
• Pau
• Pit
• Pra (new for SAPI 4.0 -- some speech engines may not support

this tag)
• Prn (some speech engines may not support this tag)
• Pro (some speech engines may not support this tag)
• Prt (some speech engines may not support this tag)
• RmS (new for SAPI 4.0 -- some speech engines may not support

this tag)
• RmW (new for SAPI 4.0 -- some speech engines may not support

this tag)
• RPit (new for SAPI 4.0 -- some speech engines may not support

this tag)
• RPrn (new for SAPI 4.0 -- some speech engines may not support

this tag)
• RSpd (new for SAPI 4.0 -- some speech engines may not support

this tag)
• Rst (new for SAPI 4.0)
• Spd
• Vce (some speech engines may not support this tag)
• Vol

 36

A text-to-speech engine can usually translate individual words to speech successfully.
However, as soon as the engine speaks a sentence, the perceived quality of its translation
decreases because the engine cannot correctly synthesize human prosody -- the inflection,
accent, and timing of human speech.

The prosody of translated speech can be improved by using text-to-speech control tags to
better simulate human speech. Control tags can be embedded in the source text passed to
an engine with the ITTSCentral::TextData member function, or they can be inserted into
the text that is currently playing by calling the ITTSCentral::Inject member function.
This allows an application to alter prosody of text as it is spoken, without having to
reconstruct the text-to-speech buffers.

This section describes control tags that you can use to alter the prosody of text translated
into speech. All tags are optional except the bookmark (Mrk) tag, which must be
supported.

Syntax

Text-to-speech control tags follow these general rules of syntax:

• All tags begin and end with a backslash character (\).
• The backslash character is not allowed within a tag.
• An odd number of backslash characters in tagged text produce

undefined behavior in the engine.
• Tags are case-insensitive. For example, \vce\ is the same as

\VCE\.
• Tags are white-space -- dependent. For example, \Rst\ is not the

same as \ Rst \.

To include a backslash character in tagged text, but outside a tag, use a double backslash
(\\).

If the application has the tagged text bit on and wishes to speak a filename, such as
"c:\windows\system\test.txt", then it should double up the backslashes (e.g.,
"c:\\windows\\system\\test.txt").

Samples:

1. \ ctx="e-mail" \ - Should be parsed as an "e-mail" tag.
2. \ctx="e-mail" - Should be ignored since it's an unclosed tag at

the end of a document.
3. \\ctx="e-mail"\\ - Speaks "back-slash c t x equals e-mail back-

slash"

 37

4. \\\\\\\\ctx="e-mail"\\\\\\\\ - Speaks "backslash backslash
backslash backslash c t x equals e-mail backslash backslash
backslash backslash"

5. \ctm="e-mail"\ - Ignored because it's an unknown tag.

When the text-to-speech engine encounters a tag it does not understand, the tag is
ignored.

Tags are persistent from one call to the ITTSCentral::TextData member function to
another. For example, if the \ctx="e-mail"\ tag is passed to an engine that supports that
tag, the engine stays in the "e-mail" context until another tag changes the context.

Conventions

This section uses the following typographic conventions.

Example Description
Chr Bold type indicates speech-inflection keywords.
string Italic indicates placeholders for information you

supply, such as a character or context string.
[[option]] Double square brackets indicate items that are

optional.
[[option...]] Three dots (an ellipsis) following an item

indicate that more items having the same form
may appear.

"C" Quotation marks are required to delimit strings.

Chr
\Chr=string[[,string...]]\

Sets the character of the voice.

Example: \Chr="Angry"\

Parameter Description

string String that specifies the characteristics of the
voice.

The default characteristic is "Normal," which produces a normal tone of voice. Although
the Chr tag is less specific than setting the inflection, stress, attack, and whispering
qualities individually, it is easier to use and allows the engine more flexibility and
intelligence in its response.

 38

Several characteristics can be specified in the same tag, separated by commas. Depending
on its capabilities, an engine may not support all of the characteristics listed here, or it
may support additional characteristics. Some common characteristics are the following:

"Angry"
"Business"
"Calm"
"Depressed"
"Excited"
"Falsetto"
"Happy"
"Loud"
"Monotone"
"Perky"
"Quiet"
"Sarcastic"
"Scared"
"Shout"
"Tense"
"Whisper"

Com
\Com=string\

Embeds a comment in the text. Comments are not translated into speech.

Example: \com="This is a comment."\

Parameter Description

String Text of the comment.

Ctx
\Ctx=string\
Note: Some speech engines may not support this tag.

Sets the context for the text that follows, which determines how symbols are spoken.

Example: \ctx="Unknown"\

Parameter Description

string String that specifies the context.

This parameter can be one of these strings:

Context
string

Description

 39

"Address" Addresses and/or phone numbers
"C" Code in the C or C++ programming

language
"Document" Text document
"E-Mail" Electronic mail
"Numbers" Numbers, dates, times, and so on
"Spreadsheet" Spreadsheet document
"Unknown" Context is unknown (default)
"Normal" Normal/default speech mode.

Dem
\Dem\
Note: Some speech engines may not support this tag.

De-emphasizes the next word.

Emp
\Emp\
Note: Some speech engines may not support this tag.

Emphasizes the next word to be spoken.

Example: the \Emp\truth, the \Emp\whole truth, and nothing \Emp\but the
truth.

Eng
\Eng;GUID:command\
\Eng:command\

Embeds an engine-specific command that affects only the engine with the specified
globally unique identifier (GUID). Subsequent engine-specific tags for that engine can
omit the GUID until an engine-specific tag for a different engine is used.

Parameter Description

GUID Globally unique identifier of the engine.

command Engine-specific command.

Mrk
\Mrk=number\

Indicates a bookmark in the text.

 40

Example: \Mrk=75000\

Parameter Description

number Number of the bookmark.

When the text-to-speech engine encounters this tag, it notifies the application by calling
the ITTSBufNotifySink::BookMark member function.

Bookmarks have a DWORD range (specified in the dwMarkNum parameter of the
ITTSBufNotifySink::BookMark member function), and the Mrk tag accepts a decimal
representation. Bookmark number zero (\Mrk=0\) is reserved; a
ITTSBufNotifySink::BookMark member function is not sent for bookmark number zero.

Bookmark tags are inserted directly into the text sent to the engine when calling the
ITTSCentral::TextData member function.

Pau
\Pau=number\

Pauses speech for the specified number of milliseconds.

Example: \Pau=1000\

Parameter Description

number Number of milliseconds to pause.

Pit
\Pit=number\

Sets the baseline pitch of the text-to-speech mode to the specified value in hertz.

Example: \Pit=90\

Parameter Description

number Pitch, in hertz.

The actual pitch fluctuates above and below this baseline. Embedding a Pit tag in text is
the same as calling the ITTSAttributes::PitchSet member function.

Pra
\Pra=value\
Note: Some speech engines may not support this tag.

 41

Sets the pitch range.

Parameter Description

value Pitch range in Hz.

Prn
\Prn=text=pronunciation\
Note: Some speech engines may not support this tag.

Indicates how to pronounce text by passing the phonetic equivalent to the engine.

Example: \Prn=tomato=tomaato\

Parameter Description

text Text to pronounce.

pronunciation Phonetic equivalent for pronouncing the text.

Using the Prn tag without specifying the word pronunciation (\Prn=text\) will undo the
changes to the pronunciation; that is, it will return the word to the original pronunciation.

This tag is valid only for engines that support the International Phonetic Alphabet. The
engine should continue to use this pronunciation for the current text-to-speech mode and
should store the pronunciation in its lexicon for later use. If a lexicon entry already exists
for a particular word, the Prn tag should be ignored for that word.

Pro
\Pro=number\
Note: Some speech engines may not support this tag.

Activates and deactivates prosodic rules, which affect pitch, speaking rate, and volume of
words independently of control tags embedded in the text. Prosodic rules are applied by
the engine.

Example: \Pro=0\

Parameter Description

number Number that indicates whether to activate or
deactivate prosodic rules. Setting number to 1,
the default, activates prosodic rules. Setting
number to 0 deactivates prosodic rules.

Prosody does not have a corresponding ITTSAttributes interface as speed and pitch do.
If the engine supports control of prosody, use the Pro tag.

 42

Prt
\Prt=string\
Note: Some speech engines may not support this tag.

Indicates the part of speech of the next word.

Example: \prt="Abbr"\

Parameter Description

string String that indicates the part of speech.

This parameter can be one of these strings:

String Description
"Abbr" Abbreviation
"Adj" Adjective
"Adv" Adverb
"Card" Cardinal number
"Conj" Conjunction
"Cont" Contraction
"Det" Determiner
"Interj" Interjection
"N" Noun
"Ord" Ordinal number
"Prep" Preposition
"Pron" Pronoun
"Prop" Proper noun
"Punct" Punctuation
"Quant" Quantifier
"V" Verb

For more information about the parts of speech, see VOICEPARTOFSPEECH.

RmS
\RmS=number\
Note: Some speech engines may not support this tag.

 43

Sets reading mode to spelling out each letter of each word, or turns it off. Not all engines
support this tag, so an application can get more consistent results by normalizing the text
itself and putting spaces between letters.

Parameter Description

number Number that indicates whether to spell out each
letter of each word. Setting number to 1 sets
reading mode to spelling out each letter of each
word. Setting number to 0, the default, turns it
off.

RmW
\RmW=number\
Note: Some speech engines may not support this tag.

Sets reading mode to leaving audible pauses between each word, or turns it off. Not all
engines support this tag, so an application can get more consistent results by normalizing
the text itself and putting periods between words.

Parameter Description

number Number that indicates whether to leave audible
pauses between each word. Setting number to 1
sets reading mode to leave audible pauses
between each word. Setting number to 0, the
default, turns it off.

RPit
\RPit=value\
Note: Some speech engines may not support this tag.

Sets the relative pitch.

Parameter Description

value Relative pitch. 100 is the default/original for the
voice.

RPrn
\RPrn=value\
Note: Some speech engines may not support this tag.

Set the relative pitch range.

 44

Parameter Description

value Relative pitch range. 100 is the default/original
for the voice.

RSpd
\RSpd=value\
Note: Some speech engines may not support this tag.

Sets the relative speed. 100 is the default/original for the voice.

Parameter Description

value Relative speed. 100 is the default/original for the
voice.

Rst
\Rst\

Resets the engine to the default settings for the current mode, as though the mode had just
been re-created.

Spd
\Spd=number\

Sets the baseline average talking speed of the text-to-speech mode to the specified
number of words per minute.

Example: \Spd=120\

Parameter Description

number Baseline average talking speed, in words per
minute.

Embedding a Spd tag in text is the same as calling the ITTSAttributes::SpeedSet
member function.

Vce
\Vce=charact=value[[,charact=value]]\
Note: Some speech engines may not support this tag.

Instructs the engine to change its speaking voice to one that has the specified
characteristics. The voice characteristics change as though a new mode object were
created (using that voice) and used. The pitch, speed, volume, etc. revert to the defaults
for the new voice. If ITTSCentral::ModeGet is called, it will reflect the new mode.

 45

Parameter Description

charact One of the characteristics listed in the table
below.

value String that specifies the characteristic.

Characteristics are specified in the order of importance. The engine selects a voice that
most closely matches the characteristics specified at the beginning of the list.

The charact=value argument can be any of the following:

• Language=language. Requests the engine speak in the
specified language

• Accent=accent. Requests the engine speak in the specified
accent. For example, if language="English" and
Accent="French" the engine will speak English with a
French accent.

• Dialect=dialect. Requests the engine speak in the specified
dialect

• Gender=gender. Specifies the gender of the voice: "Male",
"Female", or "Neutral".

• Speaker=speakername. Specifies the name of the voice, or
NULL if the name is unimportant

• Age=age. Specifies the age of the voice, which can be one of
the values shown below

• Style=style. The personality of the voice -- for example:
"Business", "Casual", "Computer", "Excited", or
"Singsong".

Age string Description
"Baby" About 1 year old
"Toddler" About 3 years old
"Child" About 6 years old
"Adolescent" About 14 years old
"Adult" Between 20 and 60 years old
"Elderly" Over 60 years old

Vol
\Vol=number\

Sets the baseline speaking volume for the text-to-speech mode.

 46

Example: \Vol=32768\

Parameter Description

number Baseline speaking volume.

The volume level is a linear range from 0 for absolute silence to 65535 for the maximum
monaural volume. The default is 65535.

If you specify a value greater than 65535, the engine assumes that you want to set the left
and right channels separately and converts the value to a double word, using the low
word for the left channel and the high word for the right channel. For example, a value of
65536 sets the left channel to the maximum baseline speaking volume and the right
channel to the minimum.

Embedding a Vol tag in text is similar to calling the ITTSAttributes::VolumeSet
member function.

 47

Appendix D, SAPI5 control tags
Please download SAPI 5.1 SDK from address
http://www.microsoft.com/speech/sapi51/SpeechSDK/sdk51.asp.

SAPI Elements
<BOOKMARK>
Inserts a bookmark into the input stream using the bookmark element. If an application
specifies interest in bookmark events, it will receive an event when synthesis has passed
this element in an input stream. If the audio output destination supports handling of
events, then an application will receive this event once the synthesized speech up to this
bookmark has been output. Otherwise, an application receives a bookmark event when the
voice implementation has synthesized speech up to this bookmark.

syntax:

<BOOKMARK
 MARK = int

/>
content: empty

order: many (default)
parents: SAPI
children: (none)

attributes: MARK
model: closed

source:

<ElementType name="BOOKMARK" content="empty" model="closed">
 <description>Inserts a bookmark into the input stream
using the bookmark element. If an application specifies
interest in bookmark events, it will receive an event when
synthesis has passed this element in an input stream. If the
audio output destination supports handling of events, then an
application will receive this event once the synthesized speech
up to this bookmark has been output. Otherwise, an application
receives a bookmark event when the voice implementation has
synthesized speech up to this bookmark. </description>
 <attribute type="MARK"/>
</ElementType>

<CONTEXT>
The context can specify the type of normalization rules which should be applied to the
scoped text. SAPI does not guarantee any predefined contexts.

syntax:

<CONTEXT
 ID = string

>
 mixed content
</CONTEXT>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: ID

 48

model: closed

source:

<ElementType name="CONTEXT" content="mixed" model="closed">
 <description>The context can specify the type of
normalization rules which should be applied to the scoped text.
SAPI does not guarantee any predefined contexts. </description>
 <attribute type="ID"/>
</ElementType>

<EMPH>
Places emphasis on the words contained by this element.

syntax: <EMPH />
content: empty

order: many (default)
parents: SAPI
children: (none)

attributes: (none)
model: closed

source:

<ElementType name="EMPH" content="empty" model="closed">
 <description>Places emphasis on the words contained by
this element. </description>
</ElementType>

<LANG>
Changes the LANGID of the scoped text. When the LANGID is changed, SAPI will try to
detect if the current voice can handle the new language. If voice does not speak the
specified language, then an engine must choose another language it speaks as a best
attempt. Using the VOICE tag and REQUIRED attribute, this fall back path can be
prevented if not desirable.

syntax:

<LANG
 LANGID = int

>
 mixed content
</LANG>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: LANGID
model: closed

source:

<ElementType name="LANG" content="mixed" model="closed">
 <description>Changes the LANGID of the scoped text.
When the LANGID is changed, SAPI will try to detect if the
current voice can handle the new language. If voice does not
speak the specified language, then an engine must choose
another language it speaks as a best attempt. Using the VOICE
tag and REQUIRED attribute, this fall back path can be
prevented if not desirable.
</description>
 <attribute type="LANGID"/>
</ElementType>

 49

<PARTOFSP>
The part of speech of contained word(s). The PARTOFSP tag is used to force a particular
pronunciation of a word (for example, the word record as a noun versus the word record
as a verb).

syntax:

<PARTOFSP
 PART = enumeration: noun|verb|modifier|function|interjection|unknown

>
 mixed content
</PARTOFSP>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: PART
model: closed

source:

<ElementType name="PARTOFSP" content="mixed" model="closed">
 <description>The part of speech of contained word(s).
The PARTOFSP tag is used to force a particular pronunciation of
a word (for example, the word record as a noun versus the word
record as a verb). </description>
 <attribute type="PART"/>
</ElementType>

<PITCH>
The scoped/global element PITCH modifies the underlying numerical values of a speech
block. Relative attribute values, those preceded by a dash (-) or a plus sign (+), increment
the underlying numerical value by the specified amount. SAPI compliant engines have the
option of supporting only the guaranteed range of values and behaving as -10 for
adjustments below -10 and behaving as +10 for values above +10.

syntax:

<PITCH
 [ABSMIDDLE = int]
 MIDDLE = int

>
 mixed content
</PITCH>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: ABSMIDDLE, MIDDLE
model: closed

source:

<ElementType name="PITCH" content="mixed" model="closed">
 <description>The scoped/global element PITCH modifies
the underlying numerical values of a speech block. Relative
attribute values, those preceded by a dash (-) or a plus sign
(+), increment the underlying numerical value by the specified
amount. SAPI compliant engines have the option of supporting
only the guaranteed range of values and behaving as -10 for
adjustments below -10 and behaving as +10 for values above

 50

+10.</description>
 <attribute type="MIDDLE"/>
 <attribute type="ABSMIDDLE"/>
</ElementType>

<PRON>
Pronounces the contained text (possibly empty) according to the provided Unicode string.

syntax:

<PRON
 SYM = char

>
 mixed content
</PRON>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: SYM
model: open

source:

<ElementType name="PRON" content="mixed" model="open">
 <description>Pronounces the contained text (possibly
empty) according to the provided Unicode string.
 </description>
 <attribute type="SYM"/>
</ElementType>

<RATE>
Set the relative speed adjustment at which words are synthesized.

syntax:

<RATE
 [ABSSPEED = int]
 [SPEED = int]

>
 mixed content
</RATE>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: ABSSPEED, SPEED
model: closed

source:

<ElementType name="RATE" content="mixed" model="closed">
 <description>Set the relative speed adjustment at which
words are synthesized.</description>
 <attribute type="SPEED"/>
 <attribute type="ABSSPEED"/>
</ElementType>

<SAPI>
At the beginning of the SAPI tag, the state of the voice is the same state as the insertion
point of the SAPI tag. At the close of the SAPI tag, the voice returns to the same state as

 51

that of the insertion point. SAPI tags may be nested. When a nested SAPI tag is closed, the
voice state returns to what it was at the insertion point of the nested tag.

syntax:

<SAPI >

(many)

 <BOOKMARK>
 <SILENCE>
 <EMPH>
 <SPELL>
 <PARTOFSP>
 <PRON>
 <LANG>
 <VOICE>
 <RATE>
 <VOLUME>
 <PITCH>
 <CONTEXT>

 mixed content
</SAPI>

content: mixed
order: many (default)

parents: No parents found. This is probably the document element.

children:
BOOKMARK, CONTEXT, EMPH, LANG, PARTOFSP, PITCH, PRON, RATE,
SILENCE, SPELL, VOICE, VOLUME

attributes: (none)
model: open

source:

<ElementType name="SAPI" content="mixed" model="open">
 <description>At the beginning of the SAPI tag, the
state of the voice is the same state as the insertion point of
the SAPI tag. At the close of the SAPI tag, the voice returns
to the same state as that of the insertion point. SAPI tags may
be nested. When a nested SAPI tag is closed, the voice state
returns to what it was at the insertion point of the nested
tag. </description>
 <element type="BOOKMARK"/>
 <element type="SILENCE"/>
 <element type="EMPH">
 <description> Place emphasis on the words
contained by this element. It is up to the engine
implementation to design what emphasis is for the engine.
</description>
 </element>
 <element type="SPELL">
 <description>Spell out words letter by letter
contained by this element. NOTE: The engine should not
normalize the text scoped in the SPELL tag. This includes
numbers, words, etc. Words which contain punctuation, such as
“U.S.A” should spell out the letters as well as the punctuation
scoped within the tag. </description>
 </element>
 <element type="PARTOFSP"/>

 52

 <element type="PRON">
 <description>String representing a phoneme for
a language supported by the voice implementing synthesized
speech. </description>
 </element>
 <element type="LANG"/>
 <element type="VOICE"/>
 <element type="RATE"/>
 <element type="VOLUME">
 <description>0 to 100 (no overflow
allowed)</description>
 </element>
 <element type="PITCH">
 <description>Set the relative pitch adjustment
of synthesized speech.</description>
 </element>
 <element type="CONTEXT"/>
</ElementType>

<SILENCE>
Produces silence for a specified number of milliseconds to the output audio stream.

syntax:

<SILENCE
 MSEC = int

/>
content: empty

order: many (default)
parents: SAPI
children: (none)

attributes: MSEC
model: closed

source:

<ElementType name="SILENCE" content="empty" model="closed">
 <description>Produces silence for a specified number of
milliseconds to the output audio stream. </description>
 <attribute type="MSEC"/>
</ElementType>

<SPELL>
Spells out words letter by letter contained by this element. Note: The engine should not
normalize the text scoped in the SPELL tag. This includes numbers, words, etc. Words that
contain punctuation, such as "U.S.A." should spell out the letters as well as the
punctuation scoped within the tag.

syntax: <SPELL />
content: empty

order: many (default)
parents: SAPI
children: (none)

attributes: (none)
model: closed

source:

<ElementType name="SPELL" content="empty" model="closed">
 <description>Spells out words letter by letter
contained by this element.

 53

Note: The engine should not normalize the text scoped in the
SPELL tag. This includes numbers, words, etc. Words that
contain punctuation, such as "U.S.A." should spell out the
letters as well as the punctuation scoped within the tag.
</description>
</ElementType>

<VOICE>
Sets which voice implementation is used for synthesis of associated input stream text.
The best voice implementation given the required and optional attributes will be selected
by SAPI.

syntax:

<VOICE
 [OPTIONAL = string]
 [REQUIRED = string]

>
 mixed content
</VOICE>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: OPTIONAL, REQUIRED
model: closed

source:

<ElementType name="VOICE" content="mixed" model="closed">
 <description>Sets which voice implementation is used
for synthesis of associated input stream text. The best voice
implementation given the required and optional attributes will
be selected by SAPI. </description>
 <attribute type="REQUIRED"/>
 <attribute type="OPTIONAL"/>
</ElementType>

<VOLUME>
The scoped/global elements VOLUME modify the underlying numerical values of a speech
block. The underlying value can never be below zero or exceed 100. All negative value
entries will result in zero and all values above 100 will result in 100. VOLUME may also
receive an absolute value (no '-' or '+' character) of an integer between zero and 100.

syntax:

<VOLUME
 LEVEL = int

>
 mixed content
</VOLUME>

content: mixed
order: many (default)

parents: SAPI
children: (none)

attributes: LEVEL
model: closed

source:
<ElementType name="VOLUME" content="mixed" model="closed">
 <description>The scoped/global elements VOLUME modify

 54

the underlying numerical values of a speech block. The
underlying value can never be below zero or exceed 100. All
negative value entries will result in zero and all values above
100 will result in 100. VOLUME may also receive an absolute
value (no '-' or '+' character) of an integer between zero and
100. </description>
 <attribute type="LEVEL"/>
</ElementType>

SAPI Attributes
<... ABSMIDDLE="">
The value can range from –10 to +10. A value of 0 sets a voice to speak at its default pitch.
A value of –10 sets a voice to speak at three-fourths (or ¾) of its default pitch. A value of
+10 sets a voice to speak at four-thirds (or 4/3) of its default pitch. Each increment
between –10 and +10 is logarithmically distributed such that incrementing/decrementing
by 1 is multiplying/dividing the pitch by the 24th root of 2 (about 1.03). Values more
extreme than –10 and 10 will be passed to an engine but SAPI 5compliant engines may not
support such extremes and instead may clip the pitch to the maximum or minimum pitch it
supports. Values of –24 and +24 must lower and raise pitch by 1 octave respectively. All
incrementing/decrementing by 1 must multiply/divide the pitch by the 24th root of 2. When
scoped, this attribute is absolute.

syntax: [ABSMIDDLE = int]
required: no (default)
datatype: int
elements: PITCH

source:

<AttributeType name="ABSMIDDLE" dt:type="int">
 <description> The value can range from –10 to +10. A
value of 0 sets a voice to speak at its default pitch. A value
of –10 sets a voice to speak at three-fourths (or ¾) of its
default pitch. A value of +10 sets a voice to speak at four-
thirds (or 4/3) of its default pitch. Each increment between –
10 and +10 is logarithmically distributed such that
incrementing/decrementing by 1 is multiplying/dividing the
pitch by the 24th root of 2 (about 1.03). Values more extreme
than –10 and 10 will be passed to an engine but SAPI 5compliant
engines may not support such extremes and instead may clip the
pitch to the maximum or minimum pitch it supports. Values of –
24 and +24 must lower and raise pitch by 1 octave respectively.
All incrementing/decrementing by 1 must multiply/divide the
pitch by the 24th root of 2. When scoped, this attribute is
absolute.</description>
</AttributeType>

<... ABSSPEED="">
The value can range from –10 to +10. A value of 0 sets a voice to speak at its default rate.
A value of –10 sets a voice to speak at one-third (or 1/3) of its default rate. A value of +10
sets a voice to speak at 3 times its default rate. Each increment between –10 and +10 is
logarithmically distributed such that incrementing/decrementing by 1 is
multiplying/dividing the rate by the 10th root of 3 (about 1.12). Values more extreme than –
10 and +10 will be passed to an engine, but SAPI 5compliant engines may not support
such extremes and instead may clip the rate to the maximum or minimum rate it supports.
When scoped, this attribute is absolute.

syntax: [ABSSPEED = int]

 55

required: no (default)
datatype: int
elements: RATE

source:

<AttributeType name="ABSSPEED" dt:type="int">
 <description>The value can range from –10 to +10. A
value of 0 sets a voice to speak at its default rate. A value
of –10 sets a voice to speak at one-third (or 1/3) of its
default rate. A value of +10 sets a voice to speak at 3 times
its default rate. Each increment between –10 and +10 is
logarithmically distributed such that incrementing/decrementing
by 1 is multiplying/dividing the rate by the 10th root of 3
(about 1.12). Values more extreme than –10 and +10 will be
passed to an engine, but SAPI 5compliant engines may not
support such extremes and instead may clip the rate to the
maximum or minimum rate it supports. When scoped, this
attribute is absolute.</description>
</AttributeType>

<... ID="">
This specifies the type of context. Refer to the SAPI documentation for the vairous context
ids.

syntax: ID = string
required: yes
datatype: string
elements: CONTEXT

source:

<AttributeType name="ID" dt:type="string" required="yes">
 <description>This specifies the type of context. Refer
to the SAPI documentation for the vairous context
ids.</description>
</AttributeType>

<... LANGID="">
Language identifier. The language identifier is specified as a hexadecimal value. For
example, the LANGID for English (US) expressed in the hexadecimal form is 409.

syntax: LANGID = int
required: yes
datatype: int
elements: LANG

source:

<AttributeType name="LANGID" dt:type="int" required="yes">
 <description>Language identifier. The language
identifier is specified as a hexadecimal value. For example,
the LANGID for English (US) expressed in the hexadecimal form
is 409. </description>
</AttributeType>

<... LEVEL="">
This specifies the volume as percent of the maximum volume of the current voice. Each
voice implementation has it’s own maximum volume. This value must between 0 and 100
inclusive. Values above 100 or below 0 are clipped to 100 and 0 respectively.

syntax: LEVEL = int
required: yes

 56

datatype: int
elements: VOLUME

source:

<AttributeType name="LEVEL" dt:type="int" required="yes">
 <description> This specifies the volume as percent of
the maximum volume of the current voice. Each voice
implementation has it’s own maximum volume. This value must
between 0 and 100 inclusive. Values above 100 or below 0 are
clipped to 100 and 0 respectively.</description>
</AttributeType>

<... MARK="">
The value of a bookmark may be any string or integer.

syntax: MARK = int
required: yes
datatype: int
elements: BOOKMARK

source:

<AttributeType name="MARK" dt:type="int" required="yes">
 <description>The value of a bookmark may be any string
or integer. </description>
</AttributeType>

<... MIDDLE="">
The value can range from –10 to +10. A value of 0 sets a voice to speak at its default pitch.
A value of –10 sets a voice to speak at three-fourths (or ¾) of its default pitch. A value of
+10 sets a voice to speak at four-thirds (or 4/3) of its default pitch. Each increment
between –10 and +10 is logarithmically distributed such that incrementing/decrementing
by 1 is multiplying/dividing the pitch by the 24th root of 2 (about 1.03). Values more
extreme than –10 and 10 will be passed to an engine but SAPI 5compliant engines may not
support such extremes and instead may clip the pitch to the maximum or minimum pitch it
supports. Values of –24 and +24 must lower and raise pitch by 1 octave respectively. All
incrementing/decrementing by 1 must multiply/divide the pitch by the 24th root of 2. When
scoped, this attribute is relative.

syntax: MIDDLE = int
required: yes
datatype: int
elements: PITCH

source:

<AttributeType name="MIDDLE" dt:type="int" required="yes">
 <description>The value can range from –10 to +10. A
value of 0 sets a voice to speak at its default pitch. A value
of –10 sets a voice to speak at three-fourths (or ¾) of its
default pitch. A value of +10 sets a voice to speak at four-
thirds (or 4/3) of its default pitch. Each increment between –
10 and +10 is logarithmically distributed such that
incrementing/decrementing by 1 is multiplying/dividing the
pitch by the 24th root of 2 (about 1.03). Values more extreme
than –10 and 10 will be passed to an engine but SAPI 5compliant
engines may not support such extremes and instead may clip the
pitch to the maximum or minimum pitch it supports. Values of –
24 and +24 must lower and raise pitch by 1 octave respectively.
All incrementing/decrementing by 1 must multiply/divide the
pitch by the 24th root of 2. When scoped, this attribute is
relative.</description>

 57

</AttributeType>

<... MSEC="">
Number of milliseconds, from zero to 65535, of silence. Value entries that exceed this
range should be limited to 65535. Value entries that are below this range (negative values)
should be set to zero.

syntax: MSEC = int
required: yes
datatype: int
elements: SILENCE

source:

<AttributeType name="MSEC" dt:type="int" required="yes">
 <description>Number of milliseconds, from zero to
65535, of silence. Value entries that exceed this range should
be limited to 65535. Value entries that are below this range
(negative values) should be set to zero. </description>
</AttributeType>

<... OPTIONAL="">
The XML parser selects the first voice registered containing all of the specified attributes.
A string that contains semicolon-delimited sub-strings is used to specify the attributes.
The speak call will fail if the parser cannot find the required tags.

syntax: [OPTIONAL = string]
required: no (default)
datatype: string
elements: VOICE

source:

<AttributeType name="OPTIONAL" dt:type="string">
 <description>The XML parser selects the first voice
registered containing all of the specified attributes. A string
that contains semicolon-delimited sub-strings is used to
specify the attributes. The speak call will fail if the parser
cannot find the required tags.
</description>
</AttributeType>

<... PART="">
String name of part of speech. Valid SAPI parts of speech arenoun, verb, modifier,
function, interjection and unknown.

syntax: PART = enumeration: noun|verb|modifier|function|interjection|unknown
required: yes
datatype: enumeration

values: noun|verb|modifier|function|interjection|unknown
elements: PARTOFSP

source:

<AttributeType name="PART" dt:type="enumeration"
dt:values="noun|verb|modifier|function|interjection|unknown"
required="yes">
 <description> String name of part of speech. Valid SAPI
parts of speech arenoun, verb, modifier, function, interjection
and unknown. </description>
</AttributeType>

<... REQUIRED="">

 58

The XML parser selects the first voice registered containing all of the specified attributes.
A string that contains semicolon-delimited sub-strings is used to specify the attributes.
The speak call will fail if the parser cannot find the required tags.

syntax: [REQUIRED = string]
required: no (default)
datatype: string
elements: VOICE

source:

<AttributeType name="REQUIRED" dt:type="string">
 <description>The XML parser selects the first voice
registered containing all of the specified attributes. A string
that contains semicolon-delimited sub-strings is used to
specify the attributes. The speak call will fail if the parser
cannot find the required tags.
</description>
</AttributeType>

<... SPEED="">
The value can range from –10 to +10. A value of 0 sets a voice to speak at its default rate.
A value of –10 sets a voice to speak at one-third (or 1/3) of its default rate. A value of +10
sets a voice to speak at 3 times its default rate. Each increment between –10 and +10 is
logarithmically distributed such that incrementing/decrementing by 1 is
multiplying/dividing the rate by the 10th root of 3 (about 1.12). Values more extreme than –
10 and +10 will be passed to an engine, but SAPI 5compliant engines may not support
such extremes and instead may clip the rate to the maximum or minimum rate it supports.
When scoped, this attribute is relative.

syntax: [SPEED = int]
required: no (default)
datatype: int
elements: RATE

source:

<AttributeType name="SPEED" dt:type="int">
 <description>The value can range from –10 to +10. A
value of 0 sets a voice to speak at its default rate. A value
of –10 sets a voice to speak at one-third (or 1/3) of its
default rate. A value of +10 sets a voice to speak at 3 times
its default rate. Each increment between –10 and +10 is
logarithmically distributed such that incrementing/decrementing
by 1 is multiplying/dividing the rate by the 10th root of 3
(about 1.12). Values more extreme than –10 and +10 will be
passed to an engine, but SAPI 5compliant engines may not
support such extremes and instead may clip the rate to the
maximum or minimum rate it supports. When scoped, this
attribute is relative.</description>
</AttributeType>

<... SYM="">
String representing a phoneme for a language supported by the voice implementing
synthesizing speech. Refer to SAPI Phoneme Spec.

syntax: SYM = char
required: yes
datatype: char
elements: PRON

 59

source:

<AttributeType name="SYM" dt:type="char" required="yes">
 <description>String representing a phoneme for a
language supported by the voice implementing synthesizing
speech. Refer to SAPI Phoneme Spec.</description>
</AttributeType>

 60

	Version 1.0
	OVERVIEW4General4Feature list4Licensing4Requirements5SAPI4 requirements5SAPI5 requirements as stated in the SAPI5 documentation5INSTALLATION6Normal installation6Manual installation of THSpeechServer.dll6USING THE SPEECH SYNTHESIZER6Synthesizer control ta
	General
	Feature list
	Licensing
	Requirements
	SAPI4 requirements
	SAPI5 requirements as stated in the SAPI5 documentation

	Installation
	Normal installation
	
	Run the installer THSpeechServer.exe and follow the instructions.

	Manual installation of THSpeechServer.dll

	Using the speech synthesizer
	Synthesizer control tags
	SAPI 4 control tag and backslash format
	SAPI 5 control tag format
	List of known control tags
	Example of the conversion

	Threading and events (desktop applications only)
	Bookmarks
	Visemes

	MP3 files
	ASP and Visual Basic quick start
	Method reference in Visual Basic syntax
	General
	Error handling
	Initialization
	Init
	SetTempPath

	Voice selection
	SelectVoice
	GetDefaultVoice
	GetVoiceCount
	GetVoiceName
	GetVoiceParam

	Speaking & converting to MP3
	SpeakToFile
	WavToMp3

	Setting voice parameters
	SetRate
	GetRate
	SetPitch (Only for SAPI4 synthesizers)
	GetPitch (Only for SAPI4 synthesizers)
	SetVolume
	GetVolume

	Speaking through the sound card
	Speak
	GetStatus
	Pause
	Resume
	Stop

	Helper methods
	DeleteFile
	ReadFile

	Redistribution and guidelines for desktop applications
	Appendix A, installation issues
	
	SAPI4
	SAPI5

	Appendix B, language codes
	Appendix C, SAPI4 control tags
	Control Tags
	Syntax
	Conventions
	Chr
	Com
	Ctx
	Dem
	Emp
	Eng
	Mrk
	Pau
	Pit
	Pra
	Prn
	Pro
	Prt
	RmS
	RmW
	RPit
	RPrn
	RSpd
	Rst
	Spd
	Vce
	Vol

	Appendix D, SAPI5 control tags
	SAPI Elements
	SAPI Attributes

