
Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 1 of 50 

    

 

 

 

 

  
ASIO 2.3  
Audio Streaming Input Output  
Development Kit  

 

 

 

 

 

Documentation Release #3 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 2 of 50 

Steinberg Audio Stream I/O API  
(c) 1997-2013, Steinberg Media Technologies GmbH  

ASIO Interface Specification v 2.3   

Contents  

I. Overview  
1. Introduction  
2. The Goal  
3. The Design  

II. Implementation Guide  
1. Instantiation  
2. Operation  
3. Driver Query by the Host Application  
4. Host Query by the Driver  
5. Audio Streaming  
6. Media Synchronisation (Sampleposition and System Time)  
7. Driver Notifications to the Host Application  

III. Function Reference  
1. Initialization/Termination  
2. Start/Stop  
3. Inquiry methods and sample rate  
4. Buffer preparation  
5. Miscellaneous  
6. Callbacks  
7. Type definitions  

IV. Host Utility API Reference  
1. AsioDrivers Class  

V. Appendix  
A. Using the bufferSwitchTimeInfo() callback  
B. Latency vs. Sample Placement  
C. Test methods  
D. Platform/OS Differences  
E. ASIODriver class for the driver implementation 
F. Sony DSD Support  
G. Microsoft Windows 64 bit 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 3 of 50 

I. Overview 

1. Introduction  

This document presents an overview of the design goals and implementation tradeoffs for an 
efficient personal computer based audio processing system. Due to technological advances in the 
computer industry in the recent years, and the ever-growing use of the Steinberg Virtual Studio 
Technology (VST) as a standard for plug-in effects, it is clear that the personal computer will be a 
major target platform for a vast number of (previously impractical) audio-processing tasks.  

2. The Goal  

The personal computer platform really misses a relatively simple way of accessing multiple audio 
inputs and outputs. Today's operating system's audio support is designed for stereo input and stereo 
output only. There is no provision to extend this without creating major problems, i.e. 
synchronization issues between the different input and output channels.  

With the Steinberg Audio Stream I/O (ASIO) Steinberg wants to help hardware and software 
manufacturers to create hardware and driver software which extends the personal computer's audio 
connectivity and meets the expectations of the customer (musician and audio engineer).  

The Audio Stream I/O API addresses the areas of efficient audio processing, high data throughput, 
synchronization, low latency and extensibility on the audio hardware side. The interface is not 
bound to any fixed number of input and output channels (of course this numbers is limited by the 
processing power and data throughput of the computer system itself). It puts no limitation on the 
sample rate (32 kHz to 96 kHz or higher), sample format (16, 24, 32 bit or 32/64 bit floating point 
formats). It takes advantage of today's computer architectures for high data throughput (PCI, 
FireWire). It supports sophisticated hardware solutions for additional audio processing but it 
remains simple in comparison to other approaches.  

3. The Design  

The audio subsystem/hardware is treated as a software component (called audio driver). That is 
ASIO requires that the hardware manufacturers provide a driver, which abstracts the audio 
hardware in the way ASIO can deal with.  

For efficient processing and great flexibility ASIO implements channels (input and output) as 
circular buffers with blocks of data. Actually a double buffer mechanism is used, which can be 
easily adapted to a great number of different buffer implementations. One buffer contains always 
data for one single channel only. This approach allows the host application to implement additional 
processing algorithms very effectively (opposed to an interleaved buffer model). The size of the 
data blocks is ascertained from the audio driver, to allow the best support for the audio hardware.  

The audio driver allocates the memory for the actual data blocks. This allows the hardware 
manufacturer to select the best memory access method for their audio I/O solution. DMA or 
memory mapped I/O can be supported with equal efficiency. This is one of the keys for achieving 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 4 of 50 

low latency in audio processing. Since current operating systems are in transition towards multi-
tasking, with all the advantages and tradeoffs, ASIO supports all features (timestamped event 
notification and adaptive data pre-fetch/processing) necessary for asynchronous operation, usually 
occurring in preemptive multitasking operating systems such as MacOS X, Windows 95/NT, IRIX, 
BeOS. This will become also important for multi processor machines (SMP) or network distributed 
processing. (A direction in which personal computer systems will be heading to in the near future.)  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 5 of 50 

   

II. Implementation Guide 

1. Instantiation  
The host application loads the driver and "links" it to itself. Depending on the Operating System, 
different methods are necessary. Please refer to the Chapter 4 "Host Utility API Reference" and the 
provided code.  

2. Operation  

The Finite State Machine diagram illustrates the states of the operation.  

Loaded: Driver code is accessible by the application  

 
Initialized: Driver is allocated by the application and inquiries from the application 

can be accepted. It is not necessary that the hardware be already 
allocated.  

Prepared: Audio buffers are allocated and the driver is prepared for running  
Running: The hardware is running and the audio streaming takes place  
 
The commands altering the states are:  

Init Initialize the driver for use by the application. Optionally acquire 
hardware or load additional driver components. ASIOInit()  

CreateBuffers Allocate memory for the audio buffers and allocate hardware resources 
for the audio channels. ASIOCreateBuffers()  

Start Starts the audio streaming process. ASIOStart()  

LOADED  

INITIALIZED  

PREPARED  

RUNNING  

INIT  

EXIT  

START  

CREATE 
BUFFERS  

STOP  

DISPOSE 
BUFFERS  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 6 of 50 

Stop Stops the streaming process. ASIOStop()  
DisposeBuffers Deallocates hardware resources for the used channels and disposes the 

memory for the audio buffers. ASIODisposeBuffers()  
Exit Deallocates any remaining resources and puts the driver back into the 

uninitialized state. ASIOExit()  
 
3. Driver Query by the Host Application  

The ASIO API provides several inquiry functions for the host application and the driver.  

After the driver is initialized, the application will query for all or some of the following capabilities:  

ASIOGetChannels() query for the number of available audio channels 
ASIOGetBufferSize() get the supported audio buffer sizes 
ASIOCanSampleRate() ask whether a specific sample rate is supported by the driver/hardware 
ASIOGetSampleRate() get the current sample rate 
ASIOGetClockSources() get the possible clock source options of the audio hardware 
ASIOGetChannelInfo() get information about a specific channel (sample type, name, word 

clock group)  
ASIOSetSampleRate() Set a sample rate of the internal clock, should be used as base sample 

rate if an external clock source is selected.  
ASIOSetClockSource() set the clock source of the card. 
ASIOGetLatencies() query for the constant audio latencies relative to the bufferSwitch() 

callback.  
 
Note: As ASIOGetLatencies() will also have to include the audio buffer size of the 
ASIOCreateBuffers() call, the application has to call this function after the buffer creation. In the 
case that the call occurs beforehand the driver should assume preferred buffer size.  

Additional queries introduced with ASIO 2.0. These queries will occur via the ASIOFuture() call.  

kAsioCanTimeInfo query for support of the new bufferSwitchTimeInfo() callback 
kAsioCanTimeCode query for time code support of the audio hardware 
kAsioCanInputMonitor query for direct input monitoring support  
 
Additional queries introduced with ASIO 2.3. They also occur via the ASIOFuture() call. 
 
kAsioCanReportOverload query if the driver can detect overload conditions. If the driver 

returns ASE_SUCCESS it has the sole responsibility to detect any 
drop-out in the audio stream and report them to the host. This is 
done via the asioMessage() callback and the kAsioOverload 
message selector. 

kAsio GetInternalBufferSamples query for the internal buffering of the driver. The authors 
of ASIO once assumed that drivers work directly with the by 
ASIO demanded double buffer, but driver designers might choose 
to add additional internal buffering due to technical constraints 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 7 of 50 

(e.g. USB audio interfaces). Knowing about such internal 
buffering, a host may optimize its own performance accordingly 
or derive e.g. more precise headroom information. 

 
4. Host Query by the Driver  

After the Prepared state the driver can query the application for the following information via the 
asioMessage() callback:  

kAsioSelectorSupported query whether the asioMessage selector is supported by the application  
kAsioEngineVersion query the host application for the ASIO version it implements. The 

application will return the highest implemented version. The host 
application is expected to always support lower version 
implementations.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 8 of 50 

5. Audio Streaming  

The audio streaming starts after the ASIOStart() call. Prior to starting the hardware streaming the 
driver will issue one or more bufferSwitch() or bufferSwitchTimeInfo() callbacks to fill its first 
output buffer(s). Since the hardware did not provide any input data yet the input channels' buffers 
should be filled with silence by the driver.  

After the driver started the hardware streaming the bufferSwitch() or bufferSwitchTimeInfo() 
callbacks will always be called when the hardware requires more data. The driver passes the index 
of the double buffer half, which has to be processed, to the application. Upon return of the callback 
the application has read all input data and provided all output data.  

Note: In order to reduce the amount of temporary buffers for a driver/hardware solution which has 
to further process the audio data, e.g. copy the data to the hardware, the ASIO API provides the 
ASIOOutputReady() method. ASIOOutputReady() is called immediately when the application has 
finished the processing of the buffers. This is a provision for drivers which require an immediate 
return of the bufferSwitch() or bufferSwitchTimeInfo() callback on interrupt driven systems like the 
Apple Macintosh, which cannot spend too long in the callback at a low level interrupt time. Instead 
the application will process the data at an interruptible execution level and inform the driver once it 
finished the processing. On a thread based system like Windows 95/98/NT or 2000 the callback can 
always process the data.  

6. Media Synchronization (Sampleposition and System Time)  

In order to provide proper media synchronization information to the host application a driver should 
fetch, at the occurrence of the bufferSwitch() or bufferSwitchTimeInfo() callback invocation event 
(interrupt or timed event), the current system time and sample position of the first sample of the 
audio buffer, which will be past to the callback. The host application retrieves this information 
during the bufferSwitch() callback with ASIOGetSamplePosition() or in the case of the 
bufferSwitchTimeInfo() callback this information is part or the parameters to the callback.  

The following table shows the callback sequence and its values for the bufferSwitchTimeInfo() 
callback (1024 samples audio buffer size at 44100 Hz, System Time at Start is 2000 ms).  

Callback No: 0 1 2 3 4 5 6  
BufferIndex: 0 1 0 1 0 1 0  
SystemTime(ms): 2000 2000 2023 2046 2069 2092 2116  
SamplePosition: 0 1024 2048 3072 4096 5120 6144  

Please note in the above table the same system time is used for the first two callbacks, as the 
hardware did not start yet. Since ASIO implements a constant streaming model, the time 
information of the first few bufferSwitch callbacks has to be ignored. The media synchronization 
process will start once the host application detects the constant streaming process. (It can be 
assumed that the streaming will be constant after the third bufferSwitch callback, more  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 9 of 50 

   
sophisticated detection methods however are preferred as some driver/hardware combinations 
might retrieve more audio data for the hardware output processing.)  
 
Note: The system time timestamp is a reference time of the operating system. Please see the  
Appendix D. "Platform / OS Differences" for the used system time information on the operating 
system.  

7. Driver Notifications to the Host Application  

The driver can notify the host application of the occurrence of some events which need special 
treatment by the host application. The following notification messages will be send via the 
asioMessage() callback.  

kAsioResetRequest the driver needs a reset, in case of an unexpected event or a 
reconfiguration  

kAsioBufferSizeChange the buffer sizes will change, issued by the user (however few 
applications support this yet, hence it is recommended to issue the 
kAsioResetRequest instead)  

kAsioResyncRequest the driver detected underruns and requires a resynchronization  
kAsioLatenciesChanged the driver detected a latency change  
 

Note: A host application has to defer processing of these notifications to a later "secure" time as the 
driver has to finish its processing of the notification. Especially on the kAsioResetRequest it is a 
bad idea to unload the driver during the asioMessage callback since the callback has to return back 
into the driver, which would then be no longer present.  

sampleRateDidChange() informs the host application that the driver detected a sample rate 
change. Usually only used for an external clock source which changes 
its sample rate. 

  
kAsioOverload informs the host application that the driver detected an overload 

condition, i.e. a drop-out in the audio stream occurred. Though once an 
overload occurred, it can’t be healed anymore, but at least the host can 
warn the user by some appropriate notification (e.g. flashing GUI 
element) 

 

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 10 of 50 

   

III. Function Reference  
 
Initialization/Termination  
ASIOError ASIOInit(ASIODriverInfo *info); 
ASIOError ASIOExit(void);  

Start/Stop  
ASIOError ASIOStart(void); 
ASIOError ASIOStop(void);  

Inquiry methods and sample rate  
ASIOError ASIOGetChannels(long *numInputChannels, long *numOutputChannels); 
ASIOError ASIOGetLatencies(long *inputLatency, long *outputLatency); 
ASIOError ASIOGetBufferSize(long *minSize, long *maxSize, long *preferredSize, long 

*granularity); 
ASIOError ASIOCanSampleRate(ASIOSampleRate sampleRate); 
ASIOError ASIOGetSampleRate(ASIOSampleRate *currentRate); 
ASIOError ASIOSetSampleRate(ASIOSampleRate sampleRate); 
ASIOError ASIOGetClockSources(ASIOClockSource *clocks, long *numSources); 
ASIOError ASIOSetClockSource(long reference); 
ASIOError ASIOGetSamplePosition (ASIOSamples *sPos, ASIOTimeStamp *tStamp); 
ASIOError ASIOGetChannelInfo(ASIOChannelInfo *info);  
 

Buffer preparation  
ASIOError ASIOCreateBuffers(ASIOBufferInfo *bufferInfos, long numChannels, long bufferSize, 

ASIOCallbacks *callbacks); 
ASIOError ASIODisposeBuffers(void); 
ASIOError ASIOOutputReady(void);  
 

Miscellaneous  
ASIOError ASIOControlPanel(void); 
ASIOError ASIOFuture(long selector, void *params);  
 

Callbacks  
void (*bufferSwitch) (long doubleBufferIndex, ASIOBool directProcess); 
ASIOTime* (*bufferSwitchTimeInfo) (ASIOTime* params, long doubleBufferIndex, ASIOBool 
directProcess); 
void (*sampleRateDidChange) (ASIOSampleRate sRate); 
long (*asioMessage) (long selector, long value, void* message, double* opt);  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 11 of 50 

   

1. Initialization/Termination  
-------------------------------------------------------------------- 
ASIOError ASIOInit(ASIODriverInfo *info);  

Purpose:  
Initialize the AudioStreamIO.  

Parameter:  
info pointer to an ASIODriverInfo structure.  

Returns:  
If neither input nor output is present ASE_NotPresent will be returned. ASE_NoMemory, 
ASE_HWMalfunction are other possible error conditions  

struct ASIODriverInfo 
{  

long asioVersion; 'on input' -  the host version. This is 0 for earlier ASIO  
implementations. The asioMessage callback is implemented 
only if asioVersion is 2 or greater. (Sorry but due to a design 
oversight the driver doesn't have access to the host version in 
ASIOInit, see also Appendix E.).  
Added selector for host (engine) version in the asioMessage 
callback so we're ok from now on.  

'on return', - ASIO implementation version. Older versions 
are 1. If you support this version (namely, 
ASIOOutputReady() ) this should be 2 or higher. also see the 
note in ASIOGetSamplePosition() !  

long driverVersion; on return, the driver version (format is driver specific)  

char name[32]; on return, a null-terminated string containing the driver's 
  name  
char errorMessage[124]; on return, should contain a user message describing the type  

of error that occurred during ASIOInit(), if any.  

void *sysRef; on input: system reference (Windows: application main  
window handle)  

};  
  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 12 of 50 

   
-------------------------------------------------------------------- 
ASIOError ASIOExit(void);  
Purpose:  
Terminates the AudioStreamIO.  

Parameter:  
None.  

Returns:  
If neither input nor output is present ASE_NotPresent will be returned.  

Notes:  
This implies ASIOStop() and ASIODisposeBuffers(), meaning that no host callbacks must be 
accessed after ASIOExit().  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 13 of 50 

   

2. Start/Stop  
-------------------------------------------------------------------- 
ASIOError ASIOStart(void);  

Purpose:  
Start input and output processing synchronously.  
This will 
- reset the sample counter to zero 
- start the hardware (both input and output)  
 
 
The first call to the hosts' bufferSwitch(index == 0) then tells the host to read from input buffer A 
(index 0), and start processing to output buffer A while output buffer B (which has been filled by 
the host prior to calling ASIOStart()) is possibly sounding (see also ASIOGetLatencies())  

Parameter:  
None.  

Returns:  
If neither input nor output is present, ASE_NotPresent will be returned. If the hardware fails to 
start, ASE_HWMalfunction will be returned.  

Notes:  
There is no restriction on the time that ASIOStart() takes to perform (that is, it is not considered a 
real-time trigger).  

-------------------------------------------------------------------- 
ASIOError ASIOStop(void);  

Purpose:  
Stops input and output processing altogether.  

Parameter:  
None.  

Returns:  
If neither input nor output is present ASE_NotPresent will be returned.  

Notes:  
On return from ASIOStop(), the driver must not call the hosts bufferSwitch() routine. On a pre- 
emptive multitasking OS you have to make sure that no pending events will call bufferSwitch() 
after the driver returned from this function.  

 

   



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 14 of 50 

3. Inquiry methods and sample rate  
--------------------------------------------------------------------  
ASIOError ASIOGetChannels(long *numInputChannels, long *numOutputChannels);  

Purpose:  
Returns number of individual input/output channels.  

Parameter:  
numInputChannels will hold the number of available input channels.  
numOutputChannels will hold the number of available output channels.  
 
Returns:  
If no input/output is present ASE_NotPresent will be returned. If only inputs, or only outputs are 
available, the according other parameter will be zero, and ASE_OK is returned.  

-------------------------------------------------------------------- 
ASIOError ASIOGetLatencies(long *inputLatency, long *outputLatency);  

Purpose:  
Returns the input and output latencies. This includes device specific delays, like FIFOs etc.  

Parameter:  
inputLatency on return will hold the 'age' of the first sample frame in the input buffer when  

the hosts reads it in bufferSwitch() (this is theoretical, meaning it does not 
include the overhead and delay between the actual physical switch, and the 
time when bufferSwitch() enters). This will usually be the size of one block in 
sample frames, plus device specific latencies.  

outputLatency on return will specify the time between the buffer switch, and the time when  
the next play buffer will start to sound. The next play buffer is defined as the 
one the host starts processing after (or at) bufferSwitch(), indicated by the 
index parameter (0 for buffer A, 1 for buffer B).  

It will usually be either one block, if the host writes directly to a DMA buffer 
or two or more blocks if the buffer is 'latched' by the driver. As an example, 
on ASIOStart(), the host will have filled the play buffer at index 1 already; 
when it gets the callback (with the parameter index == 0), this tells it to read 
from the input buffer 0, and start to fill the play buffer 0 (assuming that now 
play buffer 1 is already sounding). In this case, the output latency is one 
block. If the driver decides to copy buffer 1 at that time, and pass it to the 
hardware at the next slot (which is most commonly done, but should be 
avoided), the output latency becomes two blocks instead, resulting in a total 
i/o latency of at least 3 blocks. As memory access is the main bottleneck in 
native DSP processing, and to achieve lower latency, it is highly 
recommended to try to avoid copying (this is also why the driver is the owner  
of the buffers). To summarize, the minimum i/o latency can be achieved if the 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 15 of 50 

input buffer is processed by the host into the output buffer which will 
physically start to sound on the next time slice. Also note that the host expects 
the bufferSwitch() callback to be accessed for each time slice in order to 
retain sync, possibly recursively; if it fails to process a block in time, it will 
suspend its operation for some time in order to recover.  

 
Returns:  
If no input/output is present ASE_NotPresent will be returned.  

--------------------------------------------------------------------  
ASIOError ASIOGetBufferSize(long *minSize, long *maxSize, long *preferredSize, long 
*granularity);  

Purpose:  
Returns min, max, and preferred buffer sizes for input/output  

Parameter:  
minSize on return will hold the minimum buffer size  
maxSize on return will hold the maximum possible buffer size  
preferredSize on return will hold the preferred buffer size (a size which best fits 

performance and hardware requirements)  
granularity on return will hold the granularity at which buffer sizes may differ. 

Usually, the buffer size will be a power of 2; in this case, granularity 
will hold -1 on return, signaling possible buffer sizes starting from 
minSize, increased in powers of 2 up to maxSize.  

 
Returns:  
If no input/output is present ASE_NotPresent will be returned.  

Notes:  
When minimum and maximum buffer size are equal, the preferred buffer size has to be the same 
value as well; granularity should be 0 in this case.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 16 of 50 

-------------------------------------------------------------------- 
ASIOError ASIOCanSampleRate(ASIOSampleRate sampleRate);  

Purpose:  
Inquires of the hardware if a specific available sample rate is available.  

Parameter:  
sampleRate is the rate in question.  

Returns:  
If the stated sample rate is not supported, ASE_NoClock will be returned. If no input/output is 
present ASE_NotPresent will be returned.  

-------------------------------------------------------------------- 
ASIOError ASIOGetSampleRate(ASIOSampleRate *currentRate);  

Purpose:  
Get the current sample Rate.  

Parameter:  
currentRate on return will hold the current sample rate on return.  

Returns:  
If sample rate is unknown, sampleRate will be 0 and ASE_NoClock will be returned.  
If no input/output is present ASE_NotPresent will be returned.  

-------------------------------------------------------------------- 
ASIOError ASIOSetSampleRate(ASIOSampleRate sampleRate);  

Purpose:  
Set the hardware to the requested sample Rate. If sampleRate == 0, enable external sync.  

Parameter:  
sampleRate the requested rate  

Returns:  
If sampleRate is unknown ASE_NoClock will be returned. If the current clock is external, and 
sampleRate is != 0, ASE_InvalidMode will be returned. If no input/output is present 
ASE_NotPresent will be returned.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 17 of 50 

   
--------------------------------------------------------------------  
ASIOError ASIOGetClockSources(ASIOClockSource *clocks, long *numSources);  
 
Purpose:  
Get the available external audio clock sources  

Parameter:  
clocks points to an array of ASIOClockSource structures.  

numSources on input: the number of allocated array members  
on output: the number of available clock sources, at least 1 (internal clock 
generator).  

Returns:  
If no input/output is present ASE_NotPresent will be returned.  

struct ASIOClockSource {  
 long index; this is used to identify the clock source when 

ASIOSetClockSource() is accessed, should be an index 
counting from zero  

 long associatedChannel; the first channel of an associated input group, if any.  
 long associatedGroup; the group index of that channel. Groups of channels are 

defined to separate, for instance analog, S/PDIF, AES/EBU, 
ADAT connectors etc, when present simultaneously. Note that 
associated channel is enumerated according to 
numInputs/numOutputs, meaning it is independent from a 
group (see also ASIOGetChannelInfo()) inputs are associated 
to a clock if the physical connection transfers both data and 
clock (like S/PDIF, AES/EBU, or ADAT inputs). If there is no 
input channel associated with the clock source (like Word 
Clock, or internal oscillator), both associatedChannel and 
associatedGroup should be set to -1.  

 ASIOBool isCurrentSource; on exit, ASIOTrue if this is the current clock source, 
ASIOFalse else  

 char name[32]; a null-terminated string for user selection of the available 
sources.  

};  
  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 18 of 50 

--------------------------------------------------------------------  
ASIOError ASIOSetClockSources(long index);  

   
Purpose:  
Set the audio clock source  

Parameter:  
index as obtained from an inquiry to ASIOGetClockSources()  

Returns:  
If no input/output is present ASE_NotPresent will be returned. If the clock can not be selected 
because an input channel which carries the current clock source is active, ASE_InvalidMode *may* 
be returned (this depends on the properties of the driver and/or hardware).  

Notes:  
Should *not* return ASE_NoClock if there is no clock signal present at the selected source; this 
will be inquired via ASIOGetSampleRate(). It should call the host callback procedure 
sampleRateHasChanged(), if the switch causes a sample rate change, or if no external clock is 
present at the selected source.  

--------------------------------------------------------------------  
ASIOError ASIOGetSamplePosition (ASIOSamples *sPos, ASIOTimeStamp *tStamp);  

Purpose:  
Inquires the sample position/time stamp pair.  

Parameter:  
sPos on return will hold the sample position on return. The sample position is 

reset to zero when ASIOStart() gets called.  
tStamp on return will hold the system time when the sample position was 

latched.  
Returns:  
If no input/output is present, ASE_NotPresent will be returned. If there is no clock, 
ASE_SPNotAdvancing will be returned.  

Notes:  
In order to be able to synchronize properly, the sample position / time stamp pair must refer to the 
*current block*, that is, the engine will call ASIOGetSamplePosition() in its bufferSwitch() 
callback and expect the time for the first sample of the current block. Thus, when requested in the 
very first bufferSwitch after ASIOStart(), the sample position should be zero, and the time stamp 
should refer to the very time where the stream was started. It also means that the sample position 
must be block aligned. The driver must ensure proper interpolation if the system time can not be 
determined for the block position. The driver is responsible for precise time stamps as it usually has 
most direct access to lower level resources. Proper behavior of ASIOGetSamplePosition() and 
ASIOGetLatencies() are essential for precise media synchronization!  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 19 of 50 

--------------------------------------------------------------------  
ASIOError ASIOGetChannelInfo (ASIOChannelInfo *info);  

   
Purpose:  
Retrieve information about the nature of a channel.  

Parameter:  
info is a pointer to one ASIOChannelInfo structure.  

Returns:  
If no input/output is present ASE_NotPresent will be returned.  

Notes:  
If possible, the string should be organized such that the first characters are most significantly 
describing the nature of the port, to allow for identification even if the view showing the port name 
is too small to display more than 8 characters, for instance.  

struct ASIOChannelInfo 
{  

long channel; on input: the channel index of the channel in question.  

ASIOBool isInput; on input: ASIOTrue if info for an input channel is  

requested, else an output channel is addressed  

ASIOBool isActive; on output: ASIOTrue if channel is active as it was  

installed by ASIOCreateBuffers(), otherwise it is set to 
ASIOFalse  

long channelGroup; on output: the channel group that the channel belongs to.  

For drivers which support different types of channels, like 
analog, S/PDIF, AES/EBU, ADAT etc interfaces, there 
should be a reasonable grouping of these types. Groups 
are always independent from a channel index, that is, a 
channel index always counts from 0 to 
numInputs/numOutputs regardless of the group it may 
belong to. There will always be at least one group (group 
0). Please also note that by default, the host may decide to 
activate channels 0 and 1; thus, these should belong to the 
most useful type (analog i/o, if present).  

ASIOSampleType type; on output: contains the sample type of the channel  

char name[32]; on output: describing the type of channel in question.  
Used to allow for user selection, and enabling of specific 
channels. Examples: "Analog In", "SPDIF Out" etc.  

};  
  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 20 of 50 

   

4. Buffer preparation  

--------------------------------------------------------------------  
ASIOError ASIOCreateBuffers(ASIOBufferInfo *bufferInfos, long numChannels, long 
bufferSize, ASIOCallbacks *callbacks);  

Purpose:  
Allocates input/output buffers for all input and output channels to be activated.  

Parameter:  
bufferInfos is a pointer to an array of ASIOBufferInfo structures.  

numChannels is the sum of all input and output channels to be created; thus bufferInfos is a  
pointer to an array of numChannels ASIOBufferInfo structures.  

bufferSize selects one of the possible buffer sizes as obtained from  
ASIOGetBufferSizes().  

callbacks is a pointer to an ASIOCallbacks structure.  

Returns:  
If not enough memory is available ASE_NoMemory will be returned. If no input/output is present 
ASE_NotPresent will be returned. If bufferSize is not supported, or one or more of the bufferInfos 
elements contain invalid settings, ASE_InvalidMode will be returned.  

Notes:  
If individual channel selection is not possible but requested, the driver has to handle this. Namely, 
bufferSwitch() will only fill buffers of enabled outputs. If possible, processing and buss activities 
overhead should be avoided for channels that were not enabled here.  

struct ASIOBufferInfo 
{  

ASIOBool  isInput; on input: set to ASIOTrue if it describes an input buffer. 
Otherwise it is an output buffer  

long  channelNum; on input: the index of the channel in question (counting from 
0)  

void *buffers[2]; on output: 2 pointers to the two halves of the channels'  
double-buffer. The sizes of the buffer(s) of course depend on 
both the bufferSize and the ASIOSampleType of the device 
for the channel. See also ASIOGetChannelInfo().  

};  
  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 21 of 50 

-------------------------------------------------------------------- 
ASIOError ASIODisposeBuffers(void);  

Purpose:  
Releases all buffers for the device.  

Parameter:  
None.  

Returns:  
If no buffer were ever prepared, ASE_InvalidMode will be returned. If no input/output is present 
ASE_NotPresent will be returned.  

-------------------------------------------------------------------- 
ASIOError ASIOOutputReady(void);  

Purpose:  
This tells the driver that the host has completed processing the output buffers. If sample data format 
required by the hardware differs from the supported ASIO sample formats, but the hardware buffers 
are DMA buffers, the driver will have to convert the audio stream data. As the bufferSwitch 
callback is usually issued at DMA block switch time, the driver will have to convert the *previous* 
host buffer, which increases the output latency by one block.  

When the host finds out that ASIOOutputReady() returns true, it will issue this call whenever it 
completed output processing. Then the driver can convert the host data directly to the DMA buffer 
to be played next, reducing output latency by one block.  

Another way to look at it is, that the buffer switch is called in order to pass the *input* stream to 
the host, so that it can process the input into the output, and the output stream is passed to the driver 
when the host has completed its process.  

Parameter:  
None  

Returns:  
Only if the above mentioned scenario is given, and a reduction of output latency can be achieved by 
this mechanism, should ASE_OK be returned. Otherwise (and usually) ASE_NotPresent should be 
returned in order to prevent further calls to this function. Note that the host may want to determine 
if it can use this when the system is not yet fully initialized, so ASE_OK should always be returned 
if the mechanism makes sense.  

Notes: Please remember to adjust ASIOGetLatencies() according to whether ASIOOutputReady() 
was ever called or not, if your driver supports this scenario. Also note that the engine may fail to 
call ASIOOutputReady() in time in overload cases. As already mentioned, bufferSwitch should be 
called for every block regardless of whether a block could be processed in time.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 22 of 50 

5. Miscellaneous  
-------------------------------------------------------------------- 
ASIOError ASIOControlPanel(void);  

Purpose:  
Request the driver to start a control panel component for device specific user settings. This might 
not be accessible on all platforms.  

Parameter:  
None.  

Returns:  
If no panel is available ASE_NotPresent will be returned. Actually, the return code is ignored.  

Notes:  
If the user applied settings which require a re-configuration of parts or all of the engine and/or 
driver (such as a change of the block size), the asioMessage callback can be used (see 
ASIOCallbacks).  

-------------------------------------------------------------------- 
ASIOError ASIOFuture(long selector, void *params);  

Purpose:  
various  

Parameter:  
selector operation Code as to be defined. Zero is reserved for testing purposes.  

params depends on the selector; usually pointer to a structure for passing and  
retrieving any type and amount of parameters.  

Returns:  
The return value is also selector dependent. If the selector is unknown, ASE_InvalidParameter 
should be returned to prevent further calls with this selector. On success, ASE_SUCCESS must be 
returned  

Notes:  
See selectors defined below.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 23 of 50 

   
ASIOFuture() selectors:  
kAsioEnableTimeCodeRead 
kAsioDisableTimeCodeRead  

Purpose:  
Enable or Disable the time code reader if the hardware device supports time code.  

Parameter:  
None.  

Returns:  
ASE_SUCCESS  if request is accepted or ASE_NotPresent otherwise  

Note:  
If the hardware/driver does not support time code reader facilities ASE_NotPresent should be 
returned.  
 

kAsioSetInputMonitor  

Purpose:  
Set the direct input monitoring state.  

Parameter:  
params pointer to ASIOInputMonitor structure.  

Returns:  
ASE_SUCCESS  if request is accepted or otherwise ASE_NotPresent  

Note:  
If the hardware does not support patching and mixing a straight 1 to 1 routing is suggested. The 
driver should ignore all the information of ASIOInputMonitor it cannot deal with, usually 
these might be either or all of output, gain, pan.  

Output is the base channel of a stereo channel pair, i.e. output is always an even channel 
(0,2,4...). If an odd input channel should be monitored and no panning or output routing can be 
applied, the driver has to use the next higher output (imply a hard right pan).  

struct ASIOInputMonitor 
{  

long input; this input was set to monitor (or off), -1: all  

long output; suggested output for monitoring the input (if so)  

long gain; suggested gain, ranging 0 - 0x7fffffffL (-inf to 
+12  

dB, 0x20000000 equals 0 dB)  
ASIOBool state; ASIOTrue => on, ASIOFalse => off  

long pan; suggested pan, 0 => left, 0x7fffffff => right  
};  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 24 of 50 

 

kAsioSetIoFormat  

Purpose:  
Set the I/O format of the device.  

Parameter:  
params pointer to ASIOIoFormat structure.  

Returns:  
ASE_SUCCESS  if request is accepted or otherwise ASE_NotPresent  

Note: 
See Appendix F for further details. 
 

kAsioGetIoFormat  

Purpose:  
Get the I/O format of the device.  

Parameter:  
params pointer to ASIOIoFormat structure.  

Returns:  
ASE_SUCCESS  if request is accepted or otherwise ASE_NotPresent  

Note: 
See Appendix F for further details. 

 

kAsioCanDoIoFormat  

Purpose:  
Query the device for support of the given I/O format.  

Parameter:  
params pointer to ASIOIoFormat structure.  

Returns:  
ASE_SUCCESS  if request is accepted or otherwise ASE_NotPresent  

Note: 
See Appendix F for further details. 
 

kAsioCanReportOverload  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 25 of 50 

Purpose:  
Query the driver if the device can detect overload conditions and report them back to the host. It 
is not a constraint to support this, but we encourage driver implementors to do so, as we think 
that the driver is the best place to do this. It is essential for users to know if overloads and thus 
drop-outs in the audio stream occurred. If the driver doesn’t provide this information, the host 
has to implement some overload detection itself, which will most likely be inferior and less 
reliable. 

Parameter:  
params ignore  

Returns:  
ASE_SUCCESS  if the driver detects overload conditions and will 
report them to the host. 

Note: 
If the driver returns ASE_SUCCESS the host will switch off its own overload detection and 
solely relies on the driver’s reports. 
Overloads are reported to the host via the AsioMessage() callback and the kAsioOverload 
message selector. 
 

kAsioGetInternalBufferSamples  

Purpose:  
Query the driver for the internal buffering of the device. Additionally to the by ASIO demanded 
double buffer, driver designs might provide for even further internal buffering due to technical 
constraints. Knowing this additional buffering may help the host in e.g. projecting the system’s 
performance headroom. Though it is not mandatory, but we encourage every driver 
manufacturer to support kAsioGetInternalBufferSamples. 

Parameter:  
params  pointer to ASIOInternalBufferInfo structure..  

Returns:  
ASE_SUCCESS  if ASIOInternalBufferInfo structure got filled up with 
pertinent information. Returns ASE_InvalidParameter if not supported. 

Note: 
struct ASIOInternalBufferInfo 
{ 

long inputSamples;  // size of driver's internal input buffering which 
is included in ASIOGetLatencies 

long outputSamples;  // size of driver's internal output buffering 
     which is included in ASIOGetLatencies 

}; 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 26 of 50 

   

6. Callbacks  

-------------------------------------------------------------------- 
void (*bufferSwitch) (long doubleBufferIndex, ASIOBool directProcess);  

Purpose:  
bufferSwitch indicates that both, input and output are to be processed.  

Parameter:  
doubleBufferIndex The current buffer half index (0 or 1) determines the output buffer that the  

host should start to fill. The other buffer will be passed to output hardware 
regardless of whether it got filled in time or not. The addressed input buffer is 
now filled with incoming data. Note that because of the synchronicity of i/o, 
the input always has at least one buffer latency in relation to the output.  

directProcess suggests to the host whether it should immediately start processing  
(directProcess == ASIOTrue), or whether its process should be deferred 
because the call comes from a very low level (for instance, a high level 
priority interrupt), and direct processing would cause timing instabilities for 
the rest of the system. If in doubt, directProcess should be set to ASIOFalse.  

Returns:  
No return value.  

Notes:  
bufferSwitch() may be called at interrupt time for highest efficiency.  

--------------------------------------------------------------------  
ASIOTime* (*bufferSwitchTimeInfo) (ASIOTime* params, long doubleBufferIndex, 
ASIOBool directProcess);  

Purpose:  
bufferSwitchTimeInfo indicates that both input and output are to be processed. It also passes 
extended time information (time code for synchronization purposes) to the host application and 
back to the driver.  

Parameter:  
params pointer to ASIOTime structure  

doubleBufferIndex The current buffer half index (0 or 1) determines the output buffer that the  
host should start to fill. The other buffer will be passed to output hardware 
regardless of whether it got filled in time or not. The addressed input buffer is 
now filled with incoming data. Note that because of the synchronicity of i/o, 
the input always has at least one buffer latency in relation to the output.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 27 of 50 

directProcess suggests to the host whether it should immediately start processing  
(directProcess == ASIOTrue), or whether its process should be deferred 
because the call comes from a very low level (for instance, a high level 
priority interrupt), and direct processing would cause timing instabilities for 
the rest of the system. If in doubt, directProcess should be set to ASIOFalse.  

Returns:  
Pointer to ASIOTime structure with "output" time code information.  

Notes:  
bufferSwitchTimeInfo() may be called at interrupt time for highest efficiency.  

This new callback with time info makes ASIOGetSamplePosition() and various calls to 
ASIOGetSampleRate obsolete, and allows for timecode sync etc. Therefore it is the preferred 
callback; it will be used if the driver successfully calls asioMessage with selector 
kAsioSupportsTimeInfo.  

struct ASIOTime {  
long reserved[4]; must be 0  

AsioTimeInfo timeInfo; required  

ASIOTimeCode timeCode; optional, evaluated if (timeCode.flags & kTcValid)  
};  

struct AsioTimeInfo {  
double speed; absolute speed (1. = nominal)  

ASIOTimeStamp systemTime; system time related to samplePosition, in nanoseconds   
On Windows, must be derived from timeGetTime()  

ASIOSamples samplePosition; sample position since ASIOStart() 

ASIOSampleRate sampleRate; current rate unsigned 

long flags; see AsioTimeInfoFlags  

char reserved[12]; must be 0  
};  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 28 of 50 

   
AsioTimeInfoFlags  
kSystemTimeValid set if system time field is valid - must always be valid 
kSamplePositionValid set if sample position valid - must always be valid 
kSampleRateValid set if sample rate field is valid 
kSpeedValid set if speed field is valid 
kSampleRateChanged set if sample rate changed in between callbacks 
kClockSourceChanged set if clock source changed in between callbacks  
 
struct ASIOTimeCode {  
 double speed; speed relation (fraction of nominal speed) optional; 

set to 0. or 1. if not supported  
 ASIOSamples timeCodeSamples; time in samples unsigned 
 long flags; see ASIOTimeCodeFlags  
 char future[64]; set to 0  
};  

ASIOTimeCodeFlags  
kTcValid set if time code data is valid 
kTcRunning set if time code is running 
kTcReverse set if reverse time code is detected 
kTcOnspeed set if time code is on speed (optional) 
kTcStill set if still frame time code is received 
kTcSpeedValid set if speed field is valid  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 29 of 50 

   
-------------------------------------------------------------------- 
void (*sampleRateDidChange) (ASIOSampleRate sRate);  
 
Purpose:  
This callback will inform the host application that a sample rate change was detected (e.g. sample 
rate status bit in an incoming S/PDIF or AES/EBU signal changes).  

Parameter:  
sRate The detected sample rate. 0 when sample rate is not known (for instance,  

clock loss when externally synchronized).  

Returns:  
No return value.  

Notes:  
The host application usually will just store the information. Actual action of the host application is 
not specified.  

-------------------------------------------------------------------- 
long (*asioMessage) (long selector, long value, void* message, double* opt);  

Purpose:  
Generic callback use for various purposes, see selectors below.  

Parameter:  
selector what kind of message is send.  

value single value. Specific to each selector as defined below. 

message message parameter. Specific to each selector as defined below. 

opt optional parameter. Specific to each selector as defined below.  

Returns:  
Specific to the selector, undefined selectors will return 0.  

Notes:  
This callback was not implemented in the first ASIO host implementation of Cubase VST 3.0 for  
Macintosh, all other ASIO host application will have this callback.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 30 of 50 

   

asioMessage selectors 

kAsioSelectorSupported  

Purpose:  
Test whether the host application supports a specific selector.  

Parameter:  
value selector to be test for.  

Host Application Returns:  
1L if selector is supported or 0 otherwise  

kAsioEngineVersion  

Purpose:  
Ask the host application for its ASIO implementation.  

Parameter:  
None.  

Host Application Returns:  
Host ASIO implementation version, 2 or higher  

kAsioResetRequest  

Purpose:  
Requests a driver reset. If accepted, this will close the driver (ASIOExit() ) and re-open it again 
(ASIOInit() etc.) at the next "safe" time (usually during the application IDLE time). Some 
drivers need to reconfigure for instance when the sample rate changes, or some basic changes 
have been made in ASIOControlPanel().  

Parameter:  
None.  

Host Application Returns:  
Return value is always 1L.  

Note:  
The request is merely passed to the application, there is no way to determine if it gets accepted 
at this time (but it usually will be).  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 31 of 50 

kAsioBufferSizeChange  

Purpose:  
Informs the application that the driver has a new preferred buffer size.  

Parameter:  
value new buffer size.  

Host Application Returns:  
1L if request is accepted or 0 otherwise  

Note:  
If the request is not accepted but the buffer size changed, the driver should send 
kAsioResetRequest.  

kAsioResyncRequest  

Purpose:  
The driver went out of sync, such that the timestamp is no longer valid. This is a request to re- 
start the engine and slave devices (sequencer).  

Parameter:  
None.  

Host Application Returns:  
1L if request is accepted or 0 otherwise  

kAsioLatenciesChanged  

Purpose:  
Informs the application that the driver's latencies have changed. The engine will re-fetch the 
latencies.  

Parameter:  
None.  

Host Application Returns:  
Returns always 1L if the selector is supported is accepted or 0 otherwise  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 32 of 50 

   
kAsioSupportsTimeInfo  

Purpose:  
Ask the application whether it supports the bufferSwitchTimeInfo() callback.  

Parameter:  
None.  

Host Application Returns:  
1L if bufferSwitchTimeInfo() is supported or 0 otherwise  

kAsioSupportsTimeCode  

Purpose:  
Ask the application whether it supports time code reading in the bufferSwitchTimeInfo() 
callback.  

Parameter:  
None.  

Host Application Returns:  
1L if time code reading is supported or 0 otherwise  

Note:  
This requires that the bufferSwitchTimeInfo() callback is supported by the host application.  

 

kAsioOverload  

Purpose:  
Notify the host that the driver detected an overload condition, i.e. an interrupt or drop-out in the 
audio stream. 

Parameter:  
None.  

Host Application Returns:  
Nothing, respectively the return value can be ignored  

Note:  
It is not mandatory for a driver to send overload messages unless previously the driver returned 
ASE_SUCCESS to kAsioCanReportOverload during an ASIOFuture() call.  

 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 33 of 50 

   

7. Type definitions  
-------------------------------------------------------------------- 
Sample Types  

1. Big Endian formats  

The basic types, sample data is left aligned in the data word. The most significant Byte of the data 
word is stored first in memory.  

ASIOSTInt16MSB 16 bit data word (fewer than 16 bits are not supported) 

ASIOSTInt24MSB This is the packed 24 bit format. 2 data words will spawn consecutive 6 
bytes in memory. (Used for 18 and 20 bits as well, if they use this packed 
format)  

ASIOSTInt32MSB This format should also be used for 24 bit data, if the sample data is left 
aligned. Lowest 8 bit should be reset or dithered whatever the 
hardware/software provides. 

ASIOSTFloat32MSB IEEE 754 32 bit float, as found on PowerPC implementation 

ASIOSTFloat64MSB IEEE 754 64 bit double float, as found on PowerPC implementation  

Right aligned variations of the ASIOSTInt32MSB data type.  

These are used for 32 bit data transfers with different alignment of the sample data inside the 32 bit 
data word. This supports right aligned sample data in the 32-bit data word, most significant bits 
should be sign extended. (32 bit PCI bus systems can be more easily used with these)  

ASIOSTInt32MSB16 sample data fills the least significant 16 bits, the other bits are sign extended 

ASIOSTInt32MSB18 sample data fills the least significant 18 bits, the other bits are sign extended  

ASIOSTInt32MSB20 sample data fills the least significant 20 bits, the other bits are sign extended  

ASIOSTInt32MSB24 sample data fills the least significant 24 bits, the other bits are sign extended  

 

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 34 of 50 

   
2. Little Endian formats  
 
The basic types, sample data is left aligned in the container. The least significant Byte of the data 
word is stored first in memory.  

ASIOSTInt16LSB 16 bit data word 

ASIOSTInt24LSB This is the packed 24 bit format. 2 data words will spawn consecutive 6 
bytes in memory. (Used for 18 and 20 bits as well, if they use this packed 
format) 

ASIOSTInt32LSB This format should also be used for 24 bit data, if the sample data is left 
aligned. Lowest 8 bit should be reset or dithered whatever the 
hardware/software provides. 

ASIOSTFloat32LSB IEEE 754 32 bit float, as found on Intel x86 architecture 

ASIOSTFloat64LSB IEEE 754 64 bit double float, as found on Intel x86 architecture  

Right aligned variations of the ASIOSTInt32LSB data type.  

These are used for 32 bit data transfers with different alignment of the sample data inside the 32 bit 
data word. This supports right aligned sample data in the 32-bit data word, most significant bits 
should be sign extended. (32 bit PCI bus systems can be more easily used with these)  

ASIOSTInt32LSB16 32 bit data with 16 bit sample data right aligned 

ASIOSTInt32LSB18 32 bit data with 18 bit sample data right aligned 

ASIOSTInt32LSB20 32 bit data with 20 bit sample data right aligned 

ASIOSTInt32LSB24 32 bit data with 24 bit sample data right aligned  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 35 of 50 

3. Sony DSD formats  
 
See Appendix F for further explanations.  

ASIOSTDSDInt8LSB1 DSD 1 bit data, 8 samples per byte. First sample in Least significant bit. 

ASIOSTDSDInt8MSB1 DSD 1 bit data, 8 samples per byte. First sample in Most significant bit. 

ASIOSTDSDInt8NER8 DSD 8 bit data, 1 sample per byte. No Endianness required. 

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 36 of 50 

   
-------------------------------------------------------------------- 
ASIOSamples ASIOTimeStamp  
Number of samples - data type is 64-bit integer  
Timestamp data type is 64-bit integer. The Time format is Nanoseconds.  

Note:  

The 64 bit data is passed via a structure with two 32-bit values.  

struct {  
unsigned long hi;   // most significant bits (Bits 32..63) 
unsigned long lo;   // least significant bits (Bits 0..31)  

};  

Unfortunately the ASIO API was implemented it before compiler supported consistently 64 bit 
integer types. By using the structure the data layout on a little-endian system like the Intel x86 
architecture will result in a "non native" storage of the 64 bit data. The most significant 32 bit are 
stored first in memory, the least significant bits are stored in the higher memory space. However 
each 32 bit is stored in the native little-endian fashion.  

-------------------------------------------------------------------- 
ASIOSampleRate  
Sample rates are expressed in IEEE 754 64 bit double float, native format as host computer  

-------------------------------------------------------------------- 
ASIOBool ASIOFalse indicates a false value 
ASIOTrue indicates a true value  

Error codes  

ASE_OK This value will be returned whenever the call succeeded 
ASE_SUCCESS unique success return value for ASIOFuture calls 
ASE_NotPresent hardware input or output is not present or available 
ASE_HWMalfunction hardware is malfunctioning (can be returned by any ASIO function) 
ASE_InvalidParameter input parameter invalid 
ASE_InvalidMode hardware is in a bad mode or used in a bad mode 
ASE_SPNotAdvancing hardware is not running when sample position is inquired 
ASE_NoClock sample clock or rate cannot be determined or is not present 
ASE_NoMemory not enough memory for completing the request  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 37 of 50 

IV. Host Utility API Reference 

1. AsioDrivers Class  
The AsioDrivers class implements the unified driver enumeration and instantiation on the different 
OS platforms. However the implementation is currently limited to one active driver. Also it implies 
that a driver names will have max. 32 characters including  the terminating '\\0'.  

AsioDrivers(); 
 ~AsioDrivers(); 
Constructor/Destructor for the driver manager class  
 
------------------------------------------------------------------- 
bool loadDriver(char *name);  

Purpose:  
Instantiates an ASIO driver. Loads the driver executable into memory and resolves any OS specific 
linkage between the host application executable and the driver executable. The driver will be 
accessed via the global pointer theAsioDriver from inside "asio.cpp".  

Parameter:  
name name of the driver to load, name is to be obtained from getDriverNames().  

Returns:  
Returns true if the driver was instantiated successfully, false 
otherwise.  

-------------------------------------------------------------------- 
long getDriverNames(char **names, long maxDrivers);  

Purpose:  
Retrieves the names of the available drivers for the host 
application.  

Parameter:  
names an array of strings with up to 32 character each.  

maxDrivers number of entries in the names array.  

Returns:  
Returns the number of filled entries of the names array. The value 0 described the fact that no driver 
is available.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 38 of 50 

-------------------------------------------------------------------- 
bool getCurrentDriverName(char *name);  
Purpose:  
Retrieves the name of the currently instantiated driver.  

Parameter:  
name an array with space for 32 characters.  

Returns:  
Returns true if a driver is currently instantiated, false if no driver is instantiated.  

-------------------------------------------------------------------- 
long getCurrentDriverIndex();  

Purpose:  
Retrieves the index into the names array of the currently instantiated driver. See getDriverNames().  

Parameter:  
None.  

Returns:  
Returns index into the names array. If no driver is instantiated -1 will be returned.  

-------------------------------------------------------------------- 
void removeCurrentDriver();  

Purpose:  
Removes the currently instantiated driver from memory any further access to the driver will be 
denied.  

Parameter:  
None.  

Returns:  
None.  

Note:  
Successful removal of the driver is implied, even if no driver was instantiated.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 39 of 50 

   

V. Appendix  
A. Using the bufferSwitchTimeInfo() callback  

It is recommended to use the new method with time info even if the ASIO device does not support 
timecode; continuous calls to ASIOGetSamplePosition() and ASIOGetSampleRate() are avoided, 
and there is a defined relationship between callback time and the time info.  

See the example code for a driver on the next page.  

To initiate time info mode, after you have received the callbacks pointer in ASIOCreateBuffers(), 
you will call the asioMessage() callback with kAsioSupportsTimeInfo as the argument. If this 
returns 1, the host has accepted time info mode. Now the host expects the new callback 
bufferSwitchTimeInfo to be used instead of the old bufferSwitch method. The ASIOTime structure 
is assumed to be valid and accessible until the callback returns.  

Using time code:  

If the device supports reading time code, it will call the host's asioMessage() callback with 
kAsioSupportsTimeCode as the selector. It may then fill the according fields and set the kTcValid 
flag.  

The host will call the future method with the kAsioEnableTimeCodeRead selector when it wants to 
enable or disable time-code reading by the device.  

Note:  
The AsioTimeInfo/ASIOTimeCode pair is supposed to work in both directions. As a matter of 
convention, the relationship between the sample position counter and the time code at buffer switch 
time is (ignoring offset between time-code and sample position when time-code is running):  

on input: sample 0 -> input  buffer sample 0 -> time code 0 
on output: sample 0 -> output buffer sample 0 -> time code 0  

This means that for 'real' calculations, one has to take into account the according latencies.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 40 of 50 

   
Example:  
ASIOTime asioTime;  

in createBuffers() {  
memset(&asioTime, 0, sizeof(ASIOTime)); 
AsioTimeInfo* ti = &asioTime.timeInfo; 
ti->sampleRate = theSampleRate; 
ASIOTimeCode* tc = &asioTime.timeCode; 
tc->speed = 1.; tc->frameRate = AsioFPS_30; // frame rate 
timeInfoMode = false; 
canTimeCode = false; 
if(callbacks->asioMessage(kAsioSupportsTimeInfo, 0, 0, 0) == 1) {  

timeInfoMode = true;  
#if kCanTimeCode  

if(callbacks->asioMessage(kAsioSupportsTimeCode, 0, 0, 0) == 1)  
canTimeCode = true;  

#endif  
}  

}  

void switchBuffers(long doubleBufferIndex, bool processNow) {  
if(timeInfoMode) {  

AsioTimeInfo* ti = &asioTime.timeInfo; 
ti->flags = kSystemTimeValid | kSamplePositionValid | kSampleRateValid; 
ti->systemTime = theNanoSeconds; 
ti->samplePosition = theSamplePosition; 
if(ti->sampleRate != theSampleRate)  

ti->flags |= kSampleRateChanged;  
ti->sampleRate = theSampleRate;  

#if kCanTimeCode  
if(canTimeCode && timeCodeEnabled) {  

ASIOTimeCode* tc = &asioTime.timeCode; 
tc->timeCodeSamples = tcSamples; 
tc->flags = kTcValid | kTcRunning; // if so...  

} 
ASIOTime* bb = callbacks->bufferSwitchTimeInfo(&asioTime,  

doubleBufferIndex, processNow ? ASIOTrue : ASIOFalse); 
#else  

callbacks->bufferSwitchTimeInfo(&asioTime, doubleBufferIndex, processNow ? 
ASIOTrue : ASIOFalse); 

#endif  
} else  

callbacks->bufferSwitch(doubleBufferIndex, ASIOFalse);  
}  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 41 of 50 

   
ASIOError ASIOFuture(long selector, void *params) {  

switch(selector) { 
case kAsioEnableTimeCodeRead:  

timeCodeEnabled = true; 
return ASE_SUCCESS;  

case kAsioDisableTimeCodeRead:  
timeCodeEnabled = false; 
return ASE_SUCCESS;  

} 
return ASE_NotPresent;  

};  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 42 of 50 

B. ASIOGetLatencies() vs. Sample Placement  
This appendix covers the actual meaning of the latency values for ASIOGetLatencies(). To ease the 
understanding of these latencies the first sample inside the audio data buffer of the bufferSwitch() 
callback is used as reference into the continuous stream of audio samples.  

The latency is required by the application to align the incoming audio data to the outgoing audio 
data to the outside world. The application considers the audio data as continuous stream of samples. 
It has to send the output data ahead of time to the driver in order to have the right samples at the 
output at the right time. The incoming audio data needs to be placed at the appropriate position 
during recording.  

Below is a sample situation when a sample at sample position 256 is examined. The audio 
driver/hardware reports an output latency of 230 samples and an input latency of 239 samples.  

Output ---------------*  
Buffers |  128 |  256 |  384 |  512 | .... 
Input   *----------| will occur at position 495 in the stream  
 

The output sample will appear at the output with a delay of 230 samples. Therefore it needs to be 
placed by the application into the audio buffer at position 26.  

Input signal at sample position 256 will appear at sample position 495 inside the audio buffers.  
Since the driver informed the application about this delay it can place the input signal in relation to 
its internal time line (time reference).  

Output latency:  

The output latency specifies the time in number sample frames a sample will reach the output after 
it was passed from the application to the driver in an audio data buffer during a buffer switch. In 
order to provide the correct latency value for ASIOGetLatencies() you have to perform the 
following calculation:  

(number of queued audio buffers * size of buffer) + hardware dependent latency  

In case the hardware implements a double buffer and accesses the same memory as the 
application/driver data buffer usually one audio buffer is queued up, only the hardware dependent 
latency as found in digital transmitter or DAC's needs to be added to the audio buffer size.  

If the hardware has to copy the data from the ASIO data buffers to another buffer you should look 
at ASIOOutputReady() whether you can use this notification mechanism to keep one audio data 
buffer as fixed latency.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 43 of 50 

   
Input latency:  
The input latency specifies the number of sample frames an incoming audio sample is passed to the 
application during a buffer switch callback.  

(number of queued audio buffers * size of buffer) + hardware dependent latency  

In case the hardware implements a double buffer and accesses the same memory as the 
application/driver data buffer usually one audio buffer is queued up, only the hardware dependent 
latency as found in digital receivers or ADC's needs to be added to the audio buffer size.  

In order to reduce the input latency if the driver needs to copy the audio data to the ASIO data 
buffer, the copy operation should be executed immediately before the bufferSwitch() callback.  

Note: The latency is always constant for a specific driver/hardware combination and audio data 
buffer size. It is not affected by the time the buffer switch callback is actually issued and it does not 
reflect the time the samples of the current bufferSwitch() callback will require to pass through the 
system. This is due to the fact that the audio stream is continuously processed and the audio data 
buffer of each buffer switch is adjacently joined to audio data from the previous buffer switch.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 44 of 50 

   
C. Driver Test Methods  
1. Audio input to output placement (bounce)  

Recording audio output to input should be placed on time (+/- 1 ms) 
1. Make sure that the output is routed back to the input. (outboard connection or patchbay)  
2. In Cubase VST place a test signal (preferably a single impulse) 1 bar right to the left locator.  
3. Move the song position 1 bar before the left locator.  
4. Activate Auto-Punch In record  
5. Start playback, when the song position reaches the left locator recording will start.  
6. Stop after some time  
7. Check that the recorded signal is placed at the same time as the source signal  

Whenever the recorded signal is not aligned with the source signal, the input and/or output latency 
has to be refined.  

2. Audio to MIDI sync (Audio click/MIDI click and output latency)  

Similar test as above, however a MIDI tone generator created signal should be recorded, too. We 
suggest a stereo recording of left channel returned audio playback and right channel from the MIDI 
tone generator. As audio source the audio click and for the MIDI tone generator the MIDI click can 
be used (both can be found in the Metronome setting window of Cubase VST).  

If MIDI and audio are not aligned, please check. the ASIOGetLatency results. Please note that 
common tone generators like Yamaha MU-80 or Roland Sound Canvas have an inherent 5 ms delay 
between the computer sending a MIDI event and the sound appearing at the tone modules output. 
Therefore it is sufficient if the audio and MIDI signal are aligned with a deviation of 5 ms. If the 
deviation looks more like a multiple of the audio buffer size, an incorrect result of ASIOGetLatency 
is likely.  

3. MIDI timing stability  

Same test as above. Use Audio click as signal for the audio hardware (Metronome Dialog)  

MIDI sound generator created audio events should deviate within +/- 2 ms from the audio click. If 
MIDI notes are out of range, please check the results of ASIOGetSamplePosition(), also check that 
the driver does not influence the systems reference timer or blocks the system for too long in other 
ways.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 45 of 50 

   
4. MIDI/Audio drift  
Same test as above. Use Audio click as signal for the audio hardware (Metronome Dialog) MIDI 
notes and audio clicks should not move apart. If they do, the timestamp/sample-position result from 
ASIOGetSamplePos() needs to be checked. 

1. MIDI/Audio offset 

2. Stereo recording left channel audio click/right MIDI click 

3. Bus assignment  

4. Open last and first output/input bus and check for the right routing  
  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 46 of 50 

D. Platform/OS Differences  
 
MacOS 8/9 

Beginning with ASIO 2.3 support for MacOS 8/9 got dropped.  

Windows  

1. ASIO bufferSwitch() is usually implemented in its own thread, created by the driver. Thread 
execution is either invoked by event notification from the kernel driver or by issuing an APC in the 
thread context. The driver should set an appropriate high priority for the thread. 
Starting with Windows Vista, Microsoft introduced the Multimedia Class Scheduler Service 
(MMCSS). On Windows Vista or any newer Windows version, ASIO driver threads  must be in the 
“Pro Audio” class of MMCSS and their priority set to “CRITICAL”. This guarantees the highest 
execution priority for the bufferSwitch(). 
It lies within the sole responsibility of the ASIO driver to set the priorities of the threads it owns. 
An ASIO host shall by no means alter these priorities. 

2. It is advised that the driver provides enough audio buffer size choices to avoid audio dropouts on 
a busy system. Due to the implementation of the thread scheduler in Windows 95/98 low priority 
threads can block the high priority callback thread. The time quantum is between 15 and 19 ms. We 
observed that a buffer size of around 50 ms (2048 samples at 48 kHz sample rate) will provide 
enough head room to avoid drop outs on a heavy loaded system. Though higher buffer sizes might 
be required depending on the constraints of the driver. The driver can implement smaller audio 
buffer sizes if the user can select them.  

3. Win16Mutex contention should be avoided. Please keep in mind that calling the Win16 sub 
system can block thread execution for a long time. Several Windows 95/98 sub-systems like GDI 
and the window management are implemented in the Win16 sub-system which is secured against 
re-entrancy by the Win16Mutex. Graphic animations like the "fading" Tool Tips will execute for 
their entire duration in the Win16 sub system and can halt the Win16Mutex for a very long time  
 (we observed durations of up to 1.5 s). Therefore it is necessary to avoid Win16 sub system calls in 
the driver threads.  
 
4. On Windows the time reference for the timestamp is the multimedia timer, timeGetTime(), with 
a resolution of 1 ms. The time base for this timer can be obtained at the kernel level with the 
VMMCall GetSytemTime or GetUpdatedSystemTimeAddress.  

5. The asioMessage() callback will be present for all Windows ASIO host applications. The initial 
Macintosh ASIO host application, Cubase VST 3.0 for Macintosh, did not provide this callback.  

  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 47 of 50 

   

E. AsioDriver class for the driver implementation  
class AsioDriver { 

public:  

AsioDriver(); ~AsioDriver();  

ASIOBool init(void *);  

void getDriverName(char *name); 

long getDriverVersion(); 

void getErrorMessage(char *string); 

ASIOError start(); 

ASIOError stop(); 

ASIOError getChannels(long *numInputChannels, long *numOutputChannels); 

ASIOError getLatencies(long *inputLatency, long *outputLatency); 

ASIOError getBufferSize(long *minSize, long *maxSize, long *preferredSize, long *granularity); 

ASIOError canSampleRate(ASIOSampleRate sampleRate); 

ASIOError getSampleRate(ASIOSampleRate *sampleRate); 

ASIOError setSampleRate(ASIOSampleRate sampleRate); 

ASIOError getClockSources(ASIOClockSource *clocks, long *numSources); 

ASIOError setClockSource(long reference); 

ASIOError getSamplePosition(ASIOSamples *sPos, ASIOTimeStamp *tStamp); 

ASIOError getChannelInfo(ASIOChannelInfo *info); 

ASIOError createBuffers(ASIOBufferInfo *bufferInfos, long numChannels,  
long bufferSize, ASIOCallbacks *callbacks);  

ASIOError disposeBuffers(); 

ASIOError controlPanel(); 

ASIOError future(long selector,void *opt); 

ASIOError outputReady();  

};  

 

  
Differences to the ASIO C interface  
Nearly all member functions match the ASIO-API name with the ASIO-prefix removed. The 
exceptions are:  

AsioDriver()  
The constructor will actually just perform any system dependent tasks. On Windows it is actually 
the constructor for the COM object of the driver. See the separate documentation about the COM 
specific details on the Windows platform.  

init(), getDriverName(), getDriverVersion()  
These three member functions are a split up version of the ASIOInit() call. However not all 
parameter of the ASIOInit() call are provided.  

Missing are asioVersion and driverVersion from the ASIODriverInfo.  

init(void *sysRef) receives on Windows the applications frame window handle. 

Since the driver can not determine the host applications ASIO version until it receives the 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 48 of 50 

ASIOCallbacks structure via the createBuffers() method, it has to assume ASIO 1.0 compliance.  
During the createBuffers() call the driver can query the host for its version via asioMessage with 
the kAsioEngineVersion selector.  

~AsioDriver()  
The desctructor implies ASIOExit(). The driver will not receive the ASIOExit() call, instead the 
destructor will be invoked.  



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 49 of 50 

F. Sony DSD Support 
Definition by Steinberg/Sony Oxford 
 
1. DSD operation and buffer layout 

 
We have tried to treat DSD as PCM and so keep a consistent structure across the ASIO interface. 
 
DSD's sample rate is normally referenced as a multiple of 44.1Khz, so the standard sample rate is 
referred to as 64Fs (or 2.8224Mhz). We looked at making a special case for DSD and adding a field 
to the ASIOFuture that would allow the user to select the Over Sampling Rate (OSR) as a separate 
entity but decided in the end just to treat it as a simple value of 2.8224Mhz and use the standard 
interface to set it. 
 
The second problem was the "word" size, in PCM the word size is always a greater than or equal to 
8 bits (a byte). This makes life easy as we can then pack the samples into the "natural" size for the 
machine. In DSD the "word" size is 1 bit. This is not a major problem and can easily be dealt with if 
we ensure that we always deal with a multiple of 8 samples. 
 
DSD brings with it another twist to the endianness religion. How are the samples packed into the 
byte. It would be nice to just say the most significant bit is always the first sample, however there 
would then be a performance hit on little endian machines. Looking at how some of the processing 
goes... 
 
Little endian machines like the first sample to be in the Least Significant Bit, 

this is because when you write it to memory the data is in the correct format to be shifted in 
and out of the words. 

Big endian machine prefer the first sample to be in the Most Significant Bit, 
again for the same reason. 

 
And just when things were looking really muddy there is a proposed extension to DSD that uses 8 
bit word sizes. It does not care what endianness you use. 
 
2. Some notes on how to use ASIOIoFormatType. 
 
The caller will fill the format with the request types. If the board can do the request then it will leave 
the values unchanged. If the board does not support the request then it will change that entry to 
Invalid (-1). 
 
So to request DSD then: 
 

ASIOIoFormat NeedThis={kASIODSDFormat}; 
 

if(ASE_SUCCESS != ASIOFuture(kAsioSetIoFormat,&NeedThis) ) 
{ 

If the driver did not accept one of the parameters then the whole call will fail and the failing 
parameter will have had its value changes to -1. 

} 
 
Note: Switching between the formats need to be done before the "prepared" state (see ASIO 2 finite 
state machine) is entered. 



Steinberg Audio Streaming Input Output Specification 

Development Kit 2.3 

 

 Page 50 of 50 

G. Microsoft Windows 64 bit 
Definition by Cakewalk / Steinberg 
 
On Windows 64 bit systems with WOW6432 ASIO will work for both 32 bit and 64 bit host 
applications. It is required that an ASIO driver’s COM portion is available as 32 bit and 64 bit 
binary. 
 
A 32 bit host application will query the 32 bit Windows registry portion (Wow6432). A 64 bit host 
application will query the normal Windows registry. 
 
An ASIO driver is required to be available as 32 bit and 64 bit COM implementation. This will 
ensure compatibility for 32 bit and 64 bit host applications on Windows 64 systems. 
 
 
The Windows Registry 
 
The 64 bit ASIO driver needs to add the following entries to the Registry: 
HKEY_LOCAL_MACHINE\Software\ASIO 
 
The 32 bit ASIO driver needs to add the following entries to the Registry: 
HKEY_LOCAL_MACHINE \Software\Wow6432Node\ASIO 
 
If the driver uses DllRegisterServer/DllUnregisterServer (like register.cpp in the SDK) for adding 
itself to the Registry, Windows will automatically places the information in the right registry 
locations. 
 
If the driver uses a registry file “.reg”, the registry file need to contain information for  
HKEY_LOCAL_MACHINE\Software\ASIO 
and 
HKEY_LOCAL_MACHINE \Software\Wow6432Node\ASIO 
 
Windows will take care about selecting the appropiate Registry information for 32 bit and 64 bit 
host applications. 
 
Info: 

 The CLSID of the driver can be identical for the 32 bit and the 64 bit driver. 
 Both 32 bit and 64 bit registry entries will use the InprocServer32 value. There is no 

InprocServer64 value. 
 
 
 


